Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Microbiol ; 119(2): 224-236, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36579614

RESUMEN

Tuberculosis remains a global health threat with high morbidity. Dendritic cells (DCs) participate in the acute and chronic inflammatory responses to Mycobacterium tuberculosis (Mtb) by directing the adaptive immune response and are present in lung granulomas. In macrophages, the interaction of lipid droplets (LDs) with mycobacteria-containing phagosomes is central to host-pathogen interactions. However, the data available for DCs are still a matter of debate. Here, we reported that bone marrow-derived DCs (BMDCs) were susceptible to Mtb infection and replication at similar rate to macrophages. Unlike macrophages, the analysis of gene expression showed that Mtb infection induced a delayed increase in lipid droplet-related genes and proinflammatory response. Hence, LD accumulation has been observed by high-content imaging in late periods. Infection of BMDCs with killed H37Rv demonstrated that LD accumulation depends on Mtb viability. Moreover, infection with the attenuated strains H37Ra and Mycobacterium bovis-BCG induced only an early transient increase in LDs, whereas virulent Mtb also induced delayed LD accumulation. In addition, infection with the BCG strain with the reintroduced virulence RD1 locus induced higher LD accumulation and bacterial replication when compared to parental BCG. Collectively, our data suggest that delayed LD accumulation in DCs is dependent on mycobacterial viability and virulence.


Asunto(s)
Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Gotas Lipídicas , Virulencia , Viabilidad Microbiana , Vacuna BCG/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/microbiología
2.
Mem. Inst. Oswaldo Cruz ; 110(4): 560-565, 09/06/2015. graf
Artículo en Inglés | LILACS | ID: lil-748861

RESUMEN

A rapid decrease in parasitaemia remains the major goal for new antimalarial drugs and thus, in vivo models must provide precise results concerning parasitaemia modulation. Hydroxyethylamine comprise an important group of alkanolamine compounds that exhibit pharmacological properties as proteases inhibitors that has already been proposed as a new class of antimalarial drugs. Herein, it was tested the antimalarial property of new nine different hydroxyethylamine derivatives using the green fluorescent protein (GFP)-expressing Plasmodium berghei strain. By comparing flow cytometry and microscopic analysis to evaluate parasitaemia recrudescence, it was observed that flow cytometry was a more sensitive methodology. The nine hydroxyethylamine derivatives were obtained by inserting one of the following radical in the para position: H, 4Cl, 4-Br, 4-F, 4-CH3, 4-OCH3, 4-NO2, 4-NH2 and 3-Br. The antimalarial test showed that the compound that received the methyl group (4-CH3) inhibited 70% of parasite growth. Our results suggest that GFP-transfected P. berghei is a useful tool to study the recrudescence of novel antimalarial drugs through parasitaemia examination by flow cytometry. Furthermore, it was demonstrated that the insertion of a methyl group at the para position of the sulfonamide ring appears to be critical for the antimalarial activity of this class of compounds.


Asunto(s)
Animales , Ratones , Ratas , Antimaláricos/uso terapéutico , Malaria/tratamiento farmacológico , Parasitemia/tratamiento farmacológico , Plasmodium berghei/efectos de los fármacos , Modelos Animales de Enfermedad , Citometría de Flujo , Proteínas Fluorescentes Verdes , Técnicas In Vitro , Malaria/parasitología , Parasitemia/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA