Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Braz J Microbiol ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963475

RESUMEN

Cryptococcus gattii, an environmental fungus, is one of the agents of cryptococcosis. The influence of agrochemicals on fungal resistance to antifungals is widely discussed. However, the effects of benomyl (BEN) on fungal interaction with different hosts is still to be understood. Here we studied the influence of adaptation to BEN in the interaction with a plant model, phagocytes and with Tenebrio molitor. First, the strain C. gattii L24/01 non-adapted (NA), adapted (A) to BEN, and adapted with further culture on drug-free media (10p) interact with Nicotiana benthamiana, with a peak in the yeast burden on the 7th day post-inoculation. C. gattii L24/01 A and 10p provided lower fungal burden, but these strains increased cell diameter and capsular thickness after the interaction, together with decreased fungal growth. The strains NA and A showed reduced ergosterol levels, while 10p exhibited increased activity of laccase and urease. L24/01 A recovered from N. benthamiana was less engulfed by murine macrophages, with lower production of reactive oxygen species. This phenotype was accompanied by increased ability of this strain to grow inside macrophages. Otherwise, L24/01 A showed reduced virulence in the T. molitor larvae model. Here, we demonstrate that the exposure to BEN, and interaction with plants interfere in the morphophysiology and virulence of the C. gattii.

2.
FEMS Microbiol Ecol ; 98(4)2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35348680

RESUMEN

Cryptococcus gattii, an environmental yeast isolated from plants, is one of the agents of cryptococcosis. Here, we aimed to develop a plant model to study C. gattii-plant interaction, since it is unclear how it affects the plant and the yeast. We tested three inoculation methods (scarification, infiltration, and abrasion) in three plant species: Arabidopsis thaliana, Nicotiana tabacum, and N. benthamiana. Cryptococcus gattii was able to grow in all three models, with a peak of yeast cell burden after 7 days, without any pathological effects. Furthermore, the fungal burden was reduced later, confirming that C. gattii is not a phytopathogen. Cryptococcus gattii proliferation was higher in N. benthamiana, which presented an increase in the hydrogen peroxide content, antioxidant system activity, and indoleacetic acid (IAA) production. Cryptococcus gattii colonies recovered from N. benthamiana presented lower ergosterol content, reduced capsule, and increased growth rate in vitro and inside macrophages. In vitro, IAA altered C. gattii morphology and susceptibility to antifungal drugs. We hypothesize that C. gattii can temporarily colonize plant living tissues, which can be a potential reservoir of yeast virulence, with further dissemination to the environment, birds, and mammals. In conclusion, N. benthamiana is suitable for studying C. gattii-plant interaction.


Asunto(s)
Arabidopsis , Criptococosis , Cryptococcus gattii , Cryptococcus neoformans , Animales , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Arabidopsis/microbiología , Criptococosis/microbiología , Mamíferos , Saccharomyces cerevisiae , Nicotiana
3.
Mycoses ; 63(12): 1331-1340, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32869415

RESUMEN

BACKGROUND: Trichophyton rubrum (Tr) is the main aetiological agent of human dermatophytosis, being isolated from the environment and keratinised tissues. In the environment, Tr can interact with other organisms, such as free-living amoebas (FLA), which can act as an alternative host system to study the interaction between microbes and phagocytic cells. OBJECTIVES: To characterise the Acanthamoeba castellanii (ALX)-Tr interaction. METHODS: Interaction was characterised in three conditions: trophozoites (PYG), late (PYG/NES) and early (NES) encystation stimulus, evaluating encystation kinetics, phagocytosis, exocytosis and fungicidal activity dynamics. RESULTS: Tr was able to induce ALX encystation and be internalised by ALX. The number of internalised conidia was high at 1 hour, and ALX presented fungicidal activity with increased intracellular ROS production and exocytosis. In PYG/NES, phagocytosis and ROS production were reduced, with decreased ALX's fungicidal activity. However, in NES there was an increased fungal engulfment, and a reduced ROS production and higher fungal burden. Furthermore, exogenous mannose decreased phagocytosis of Tr conidia, and divalent cations induced ROS production and increased ALX's fungicidal activity. Interestingly, phagocytosis was reduced in the presence of cytoskeleton inhibitor, but exocytosis was increased, suggesting that Tr conidia may have alternative pathways to escape ALX's cells. CONCLUSION: A castellanii is a proper model for studying Tr-FLA interaction, since ALX can engulf, produce ROS and kill Tr, and all these parameters are influenced by an encystation stimulus and divalent cations. Moreover, this interaction is likely to occur in the environment implicating in the adaptation to environmental stressful conditions in both organisms.


Asunto(s)
Acanthamoeba castellanii/microbiología , Acanthamoeba castellanii/fisiología , Arthrodermataceae/fisiología , Interacciones Microbiota-Huesped , Cationes , Exocitosis , Humanos , Queratitis/microbiología , Macrófagos/microbiología , Ácido Peroxinitroso/análisis , Fagocitosis , Especies Reactivas de Oxígeno/análisis , Esporas Fúngicas/fisiología
4.
Artículo en Inglés | MEDLINE | ID: mdl-32547964

RESUMEN

Biological control agents (BCA) are an alternative to chemical pesticides and an emerging strategy to safely eliminate plant pathogens. Trichoderma spp. are the most common fungi used as BCAs. They produce spores that are released into the air and can potentially interact with immune system of mammals. We previously showed that Trichoderma affects expression of genes encoding pattern recognition receptors (PRRs) and cytokines in mice. PRRs are involved in the recognition of microorganisms and can lead to pro-tumoral signaling. Here, we evaluated if mice injected with low doses of murine melanoma exhibited increased development of lung tumor when treated with conidia of T. stromaticum. Mice treated with T. stromaticum and inoculated with B16-F10 melanoma cells exhibited significant increase in tumor uptake (p = 0.006) and increased number of visible nodules in the lungs (p = 0.015). We also analyzed mRNA expression levels of genes encoding PRRs in lung of mice exposed to T. stromaticum and demonstrated that mice treated with T. stromaticum conidia exhibited lower expression levels of Clec7a and increased expression of Tlr4 (toll like receptor 4) compared to non-treated controls. The expression levels of Clec7a and Tlr2 were increased in mice treated with T. stromaticum and inoculated with murine melanoma compared to controls only inoculated with melanoma. Our results demonstrate that intranasal exposition to T. stromaticum increases tumor in the B16-F10 model, which may raise concerns regarding the safety of its use in agriculture.


Asunto(s)
Neoplasias Pulmonares , Melanoma , Trichoderma , Animales , Agentes de Control Biológico , Hypocreales , Ratones , Ratones Endogámicos C57BL
5.
Cell Microbiol ; 22(6): e13179, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32017324

RESUMEN

Cryptococcus gattii (Cg) is one of the agents of cryptococcosis, a severe systemic mycosis with a higher prevalence in men than women, but the influence of the female sex hormone, 17-ß-estradiol (E2), on cryptococcosis remains unclear. Our study shows that female mice presented delayed mortality, increased neutrophil recruitment in bronchoalveolar lavage fluid, and reduced fungal load after 24 hr of infection compared to male and ovariectomised female mice (OVX). E2 replacement restored OVX female survival. Female macrophages have more efficient fungicidal activity, which was increased by E2 and reversed by the antagonist of G-protein-coupled oestrogen receptor (GPER), which negatively modulates PI3K activation. Furthermore, E2 induces a reduction in Cg cell diameter, cell charge, and antioxidant peroxidase activity. In conclusion, female mice present improved control of Cg infection, and GPER is important for E2 modulation of the female response.


Asunto(s)
Criptococosis/tratamiento farmacológico , Cryptococcus gattii/efectos de los fármacos , Estradiol/farmacología , Proteínas de Unión al GTP/metabolismo , Macrófagos/efectos de los fármacos , Receptores de Estrógenos/metabolismo , Animales , Antifúngicos/farmacología , Antioxidantes , Criptococosis/inmunología , Modelos Animales de Enfermedad , Femenino , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
6.
Artículo en Inglés | MEDLINE | ID: mdl-29018774

RESUMEN

Influenza A virus (IAV) infects millions of people annually and predisposes to secondary bacterial infections. Inhalation of fungi within the Cryptococcus complex causes pulmonary disease with secondary meningo-encephalitis. Underlying pulmonary disease is a strong risk factor for development of C. gattii cryptococcosis though the effect of concurrent infection with IAV has not been studied. We developed an in vivo model of Influenza A H1N1 and C. gattii co-infection. Co-infection resulted in a major increase in morbidity and mortality, with severe lung damage and a high brain fungal burden when mice were infected in the acute phase of influenza multiplication. Furthermore, IAV alters the host response to C. gattii, leading to recruitment of significantly more neutrophils and macrophages into the lungs. Moreover, IAV induced the production of type 1 interferons (IFN-α4/ß) and the levels of IFN-γ were significantly reduced, which can be associated with impairment of the immune response to Cryptococcus during co-infection. Phagocytosis, killing of cryptococci and production of reactive oxygen species (ROS) by IAV-infected macrophages were reduced, independent of previous IFN-γ stimulation, leading to increased proliferation of the fungus within macrophages. In conclusion, IAV infection is a predisposing factor for severe disease and adverse outcomes in mice co-infected with C. gattii.


Asunto(s)
Causalidad , Coinfección , Criptococosis/complicaciones , Cryptococcus gattii/patogenicidad , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/complicaciones , Acetilglucosaminidasa/metabolismo , Animales , Conducta Animal , Encéfalo/microbiología , Encéfalo/patología , Proliferación Celular , Quimiocinas/metabolismo , Coinfección/inmunología , Coinfección/microbiología , Coinfección/mortalidad , Coinfección/virología , Criptococosis/inmunología , Cryptococcus gattii/inmunología , Cryptococcus neoformans/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Perros , Femenino , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Interferón gamma/metabolismo , Pulmón/enzimología , Pulmón/patología , Pulmón/virología , Macrófagos/metabolismo , Macrófagos/virología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos C57BL , Neutrófilos , Óxido Nítrico/metabolismo , Infecciones por Orthomyxoviridae/inmunología , Peroxidasa/metabolismo , Ácido Peroxinitroso/metabolismo , Fagocitosis , Especies Reactivas de Oxígeno/metabolismo , Tasa de Supervivencia
7.
Artículo en Inglés | MEDLINE | ID: mdl-28596945

RESUMEN

Cryptococcus gattii is one of the main causative agents of cryptococcosis in immunocompetent individuals. Treatment of the infection is based on the use of antimycotics, however, the toxicity of these drugs and the increase of drug-resistant strains have driven the search for more effective and less toxic therapies for cryptococcosis. pCramoll are isolectins purified from seeds of Cratylia mollis, a native forage plant from Brazil, which has become a versatile tool for biomedical application. We evaluated the effect of pCramoll alone and in combination with fluconazole for the treatment of mice infected with C. gatti. pCramoll alone or in combination with fluconazole increased the survival, reduced the morbidity and improved mice behavior i.e., neuropsychiatric state, motor behavior, autonomic function, muscle tone and strength and reflex/sensory function. These results were associated with (i) decreased pulmonary and cerebral fungal burden and (ii) increased inflammatory infiltrate and modulatory of IFNγ, IL-6, IL-10, and IL-17A cytokines in mice treated with pCramoll. Indeed, bone marrow-derived macrophages pulsed with pCramoll had increased ability to engulf C. gattii, with an enhanced production of reactive oxygen species and decrease of intracellular fungal proliferation. These findings point toward the use of pCramoll in combination with fluconazole as a viable, alternative therapy for cryptococcosis management.


Asunto(s)
Criptococosis/tratamiento farmacológico , Cryptococcus gattii/efectos de los fármacos , Cryptococcus gattii/patogenicidad , Combinación de Medicamentos , Fabaceae/química , Fluconazol/uso terapéutico , Lectinas/uso terapéutico , Extractos Vegetales/uso terapéutico , Acetilglucosaminidasa/metabolismo , Animales , Encéfalo/microbiología , Encéfalo/patología , Brasil , Proliferación Celular , Criptococosis/fisiopatología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Fluconazol/farmacología , Inmunomodulación , Interferón gamma/metabolismo , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Lectinas/farmacología , Pulmón/microbiología , Pulmón/patología , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Peroxidasa/metabolismo , Fagocitosis , Extractos Vegetales/farmacología , Especies Reactivas de Oxígeno , Semillas/química , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA