Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cytokine ; 169: 156307, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37487380

RESUMEN

Inflammatory bowel disease (IBD) is a group of chronic and life-threating inflammatory diseases of the gastrointestinal tract. The active intestinal absorption of bile salts is reduced in IBD, resulting in higher luminal concentrations of these agents that contribute to the pathophysiology of IBD-associated diarrhea. Butyrate (BT) is a short-chain fatty acid produced by colonic bacterial fermentation of dietary fibers. BT utilization is impaired in the intestinal inflamed mucosa of IBD patients. Our aim was to investigate the link between IBD and bile acid absorption, by testing the effect of the pro-inflammatory cytokines TNF-α and IFN-γ and of BT upon 3H-TC uptake by Caco-2 cells. The proinflammatory cytokines TNF-α and IFN-γ inhibit Na+-independent, non-ASBT (sodium-dependent bile acid transporter)-mediated 3H-TC uptake by Caco-2 cells. The inhibitory effect of these cytokines on Na+-independent 3H-TC uptake is PI3K- and JAK/STAT1-mediated. These two compounds upregulate ASBT expression levels, but no corresponding increase in Na+-dependent component of 3H-TC is observed. Moreover, BT was also found to inhibit 3H-TC uptake and showed an additive effect with IFN-γ in reducing 3H-TC uptake. We conclude that an interaction between BT and bile acids appears to exist in IBD, which may participate in the link between diet, microbiota and IBD.


Asunto(s)
Citocinas , Enfermedades Inflamatorias del Intestino , Humanos , Células CACO-2 , Citocinas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Butiratos/farmacología , Ácido Taurocólico/farmacología , Ácido Taurocólico/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo , Ácidos y Sales Biliares
2.
Exp Cell Res ; 429(2): 113670, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37290498

RESUMEN

Butyrate (BT) is important in the prevention and inhibition of colorectal cancer (CRC). Inflammatory bowel disease, a risk factor for CRC, is associated with higher levels of proinflammatory cytokines and bile acids. The aim of this work was to investigate the interaction of these compounds in inhibiting BT uptake by Caco-2 cells, as a mechanism contributing to the link between IBD and CRC. TNF-α, IFN-γ, chenodeoxycholic acid (CDCA) and deoxycholic acid (DCA) markedly reduce 14C-BT uptake. All these compounds appear to inhibit MCT1-mediated BT cellular uptake at a posttranscriptional level, and, because their effect is not additive, they are most probably inhibiting MCT1 by a similar mechanism. Correspondingly, the antiproliferative effect of BT (MCT1-dependent) and of the proinflammatory cytokines and CDCA were not additive. In contrast, the cytotoxic effect of BT (MCT1-independent) and of the proinflammatory cytokines and CDCA were additive. In conclusion, proinflammatory cytokines (TNF-α and IFN-γ) and bile acids (DCA and CDCA) inhibit MCT1-mediated BT cellular uptake. These proinflammatory cytokines and CDCA were found to interfere with the antiproliferative effect of BT, mediated by an inhibitory effect upon MCT1-mediated cellular uptake of BT.


Asunto(s)
Ácidos y Sales Biliares , Citocinas , Humanos , Ácidos y Sales Biliares/farmacología , Butiratos/farmacología , Células CACO-2 , Factor de Necrosis Tumoral alfa/farmacología , Ácido Quenodesoxicólico/farmacología
3.
Curr Rev Clin Exp Pharmacol ; 16(1): 64-72, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-31750807

RESUMEN

BACKGROUND: Rocuronium is a muscle relaxant with increased use due to its binding relation with the reversal agent sugammadex. The purpose of this review entails the investigation of its use for the maintenance of Deep Neuromuscular Block (NMB) via continuous infusion. METHODS: Based on PRISMA systematic search guidelines, databases included PubMed, ISI Web of Science, Cochrane Library and Google Scholar. This comprehensive search addresses surgical patients under deep muscle relaxation via continuous rocuronium infusion. The main indicators were the rocuronium administration, NMB monitoring approaches and effects in order to maintain the deep level of relaxation, as well as reversal time after a standard dose of sugammadex. RESULTS: Despite the variance in approaches found in the literature, findings show the overall maintenance of deep NMB requires approximately 0.758 mg.kg-1h-1 of rocuronium (according to the PTC target of 0-10, 0-5 and 1-2, mean estimates are 0.445, 0.65 and 0.833 mg.kg-1h-1 respectively), suggesting that a lower range and a smaller maximum of PTC response require higher amount of rocuronium for its maintenance. The standard dose of sugammadex (4 mg/kg), administered at the end of the surgery takes longer [2.85 (1.17) min] than when they are administered after moderate NMB recovery [1.68 (0.47) min]. CONCLUSION: Continuous infusion for deep NMB presents inherent advantages in terms of maintenance and stability of muscle relaxation. Monitoring and rocuronium administration approaches are fundamental and intrinsically connected to provide a stable and improved maintenance of deep NMB.


Asunto(s)
Bloqueo Neuromuscular , Fármacos Neuromusculares no Despolarizantes , gamma-Ciclodextrinas , Androstanoles , Humanos , Rocuronio
4.
Cell J ; 19(Suppl 1): 96-105, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28580313

RESUMEN

OBJECTIVE: Colorectal cancer (CRC) is the second leading cause of cancer death in occidental countries. Chronic inflammatory bowel disease (crohn's disease and ulcerative colitis) is associated with an increased risk for CRC development. The aim of this work was to investigate the relationship between inflammatory status and absorption of nutrients with a role in CRC pathogenesis. MATERIALS AND METHODS: In this experimental study, we evaluated the in vitro effect of tumour necrosis factor-alpha (TNF-α), interferon-γ (IF-γ), and acetylsalicylic acid on 14C-butyrate (14C- BT), 3H-folic acid (3H-FA) uptake, and on proliferation, viability and differentiation of Caco-2 and IEC-6 cells in culture. RESULTS: The proinflammatory cytokines TNF-α and INF-γ were found to decrease uptake of a low concentration of 14C-BT (10 µM) by Caco-2 (tumoral) and IEC-6 (normal) intestinal epithelial cell lines. However, the effect of TNF-α and INF-γ in IEC-6 cells is most probably related to a cytotoxic and antiproliferative impact. In contrast, INF-γ increases uptake of a high concentration (10 mM) of 14C-BT in Caco-2 cells. The anticarcinogenic effect of BT (10 mM) in these cells is not affected by the presence of this cytokine. On the other hand, acetylsalicylic acid stimulates 14C-BT uptake by Caco-2 cells and potentiates its antiproliferative effect. Finally, both TNF-α and INF-γ cause a significant decrease in 3H-FA uptake by Caco-2 cells. CONCLUSION: The inflammatory status has an impact upon cellular uptake of BT and FA, two nutrients with a role in CRC pathogenesis. Moreover, the anti-inflammatory acetylsalicylic acid potentiates the anticarcinogenic effect of BT in Caco-2 cells by increasing its cellular uptake.

6.
Cell Biol Toxicol ; 28(6): 369-81, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22956110

RESUMEN

Folic acid (FA) is a vitamin essential for normal cellular functions, growth, and development. Because humans cannot synthesize this micronutrient, it must be obtained from dietary sources through intestinal absorption. The intestinal tract is a major target for oxidative stress. Our aim was to investigate the effect of oxidative stress upon the uptake of FA by Caco-2 cells. Oxidative stress was induced by exposure of the cells to tert-butyl hydroperoxide (TBH) for 1 h. TBH (3,000 µM) induced an increase in biomarkers of oxidative stress, while maintaining cell viability and proliferation. In relation to the apical uptake of (3)H-FA, TBH (3,000 µM) reduced the cellular accumulation of (3)H-FA (10 nM), although the characteristics (kinetics, pH dependence, and inhibitory profile) of (3)H-FA uptake were not changed. This effect was associated with a decrease in the mRNA steady-state levels of proton-coupled folate transporter and folate receptor alpha and of the efflux transporter multidrug resistance protein 2. Moreover, TBH (3,000 µM) did not affect the noncarrier-mediated apical uptake of (3)H-FA. Finally, the effect of TBH upon (3)H-FA apical uptake was not dependent on protein kinase A, protein kinase C, mitogen-activated protein kinases, phosphoinositide 3-kinase, nuclear factor kappa B, and protein tyrosine kinases, but was completely prevented by dietary polyphenols (resveratrol, quercetin, and EGCG). These results suggest that oxidative stress at the intestinal level may result in a reduction in the intestinal absorption of dietary FA and that polyphenolic dietary components may offer protection against oxidative stress-induced inhibition of intestinal FA absorption.


Asunto(s)
Ácido Fólico/metabolismo , Absorción Intestinal , Mucosa Intestinal/metabolismo , Estrés Oxidativo , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Transporte Biológico/efectos de los fármacos , Células CACO-2 , Proliferación Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Receptor 1 de Folato/genética , Humanos , Absorción Intestinal/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Moduladores del Transporte de Membrana/farmacología , Proteínas de Transporte de Membrana/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Polifenoles/farmacología , Proteína Quinasa C/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Transportador de Folato Acoplado a Protón/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , terc-Butilhidroperóxido , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA