Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Platelets ; 34(1): 2206921, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37139869

RESUMEN

Statins inhibit the mevalonate pathway by impairing protein prenylation via depletion of lipid geranylgeranyl diphosphate (GGPP). Rab27b and Rap1a are small GTPase proteins involved in dense granule secretion, platelet activation, and regulation. We analyzed the impact of statins on prenylation of Rab27b and Rap1a in platelets and the downstream effects on fibrin clot properties. Whole blood thromboelastography revealed that atorvastatin (ATV) delayed clot formation time (P < .005) and attenuated clot firmness (P < .005). ATV pre-treatment inhibited platelet aggregation and clot retraction. Binding of fibrinogen and P-selectin exposure on stimulated platelets was significantly lower following pre-treatment with ATV (P < .05). Confocal microscopy revealed that ATV significantly altered the structure of platelet-rich plasma clots, consistent with the reduced fibrinogen binding. ATV enhanced lysis of Chandler model thrombi 1.4-fold versus control (P < .05). Western blotting revealed that ATV induced a dose-dependent accumulation of unprenylated Rab27b and Rap1a in the platelet membrane. ATV dose-dependently inhibited ADP release from activated platelets. Exogenous GGPP rescued the prenylation of Rab27b and Rap1a, and partially restored the ADP release defect, suggesting these changes arise from reduced prenylation of Rab27b. These data demonstrate that statins attenuate platelet aggregation, degranulation, and binding of fibrinogen thereby having a significant impact on clot contraction and structure.


What is the context? Statins such as Atorvastatin (ATV) are 3-hydroxy, 3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, which block the cholesterol biosynthetic pathway to lower total serum levels and LDL-cholesterol.The cholesterol pathway also provides a supply of isoprenoids (farnesyl and geranylgeranyl) for the prenylation of signaling molecules, which include the families of Ras and Rho small GTPases.Prenyl groups provide a membrane anchor that is essential for the correct membrane localization and function of these proteins.Statins deplete cells of lipid geranylgeranyl diphosphate (GGPP) thereby inhibiting progression of the mevalonate pathway and prenylation of proteins.Rab27b and Rap1 are small GTPase proteins in platelets that are involved in the secretion of platelet granules and integrin activation.What is new?In this study, we found that ATV impairs prenylation of Rab27b and Rap1a and attenuates platelet function.These effects were partially rescued by GGPP, indicating the involvement of the mevalonate pathway.Platelet aggregation and degranulation was significantly attenuated by ATV.The impact of statins on platelet function altered clot formation, structure and contraction generating a clot that was more susceptible to degradation.What is the impact?This study demonstrates a novel mechanism whereby statins alter platelet responses and ultimately clot structure and stability.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Trombosis , Humanos , Adenosina Difosfato/metabolismo , Atorvastatina/farmacología , Plaquetas/metabolismo , Fibrinógeno/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Prenilación , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rap1/metabolismo , Trombosis/tratamiento farmacológico , Trombosis/metabolismo
2.
Sci Rep ; 7(1): 3012, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28592808

RESUMEN

Autosomal recessive osteopetrosis (ARO) is a heterogeneous disorder, characterized by defective osteoclastic resorption of bone that results in increased bone density. We have studied nine individuals with an intermediate form of ARO, from the county of Västerbotten in Northern Sweden. All afflicted individuals had an onset in early infancy with optic atrophy, and in four patients anemia was present at diagnosis. Tonsillar herniation, foramen magnum stenosis, and severe osteomyelitis of the jaw were common clinical features. Whole exome sequencing, verified by Sanger sequencing, identified a splice site mutation c.212 + 1 G > T in the SNX10 gene encoding sorting nexin 10. Sequence analysis of the SNX10 transcript in patients revealed activation of a cryptic splice site in intron 4 resulting in a frame shift and a premature stop (p.S66Nfs * 15). Haplotype analysis showed that all cases originated from a single mutational event, and the age of the mutation was estimated to be approximately 950 years. Functional analysis of osteoclast progenitors isolated from peripheral blood of patients revealed that stimulation with receptor activator of nuclear factor kappa-B ligand (RANKL) resulted in a robust formation of large, multinucleated osteoclasts which generated sealing zones; however these osteoclasts exhibited defective ruffled borders and were unable to resorb bone in vitro.


Asunto(s)
Codón sin Sentido , Mutación del Sistema de Lectura , Osteoclastos/patología , Osteopetrosis/genética , Osteopetrosis/patología , Nexinas de Clasificación/genética , Haplotipos , Humanos , Ligando RANK/metabolismo , Suecia , Secuenciación Completa del Genoma
3.
Eur J Med Chem ; 84: 77-89, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25016230

RESUMEN

Phosphonocarboxylate (PC) analogs of the anti-osteoporotic drugs, bisphosphonates, represent the first class of selective inhibitors of Rab geranylgeranyl transferase (RabGGTase, RGGT), an enzyme implicated in several diseases including ovarian, breast and skin cancer. Here we present the synthesis and biological characterization of an extended set of this class of compounds, including lipophilic derivatives of the known RGGT inhibitors. From this new panel of PCs, we have identified an inhibitor of RGGT that is of similar potency as the most active published phosphonocarboxylate, but of higher selectivity towards this enzyme compared to prenyl pyrophosphate synthases. New insights into structural requirements are also presented, showing that only PC analogs of the most potent 3rd generation bisphosphonates inhibit RGGT. In addition, the first phosphonocarboxylate-derived GGPPS inhibitor is reported.


Asunto(s)
Transferasas Alquil y Aril/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Organofosfonatos/farmacología , Transferasas Alquil y Aril/metabolismo , Animales , Bovinos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Células HeLa , Humanos , Estructura Molecular , Organofosfonatos/síntesis química , Organofosfonatos/química , Relación Estructura-Actividad
4.
Bone ; 57(1): 242-51, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23962725

RESUMEN

Bisphosphonates (BPs) are widely used in the treatment of several bone diseases, such as osteoporosis and cancers that have metastasized to bone, by virtue of their ability to inhibit osteoclastic bone resorption. Previously, it was shown that osteoclasts present at different bone sites have different characteristics. We hypothesized that BPs could have distinct effects on different populations of osteoclasts and their precursors, for example as a result of a different capacity to endocytose the drugs. To investigate this, bone marrow cells were isolated from jaw and long bone from mice and the cells were primed to differentiate into osteoclasts with the cytokines M-CSF and RANKL. Before fusion occurred, cells were incubated with fluorescein-risedronate (FAM-RIS) for 4 or 24h and uptake was determined by flow cytometry. We found that cultures obtained from the jaw internalized 1.7 to 2.5 times more FAM-RIS than long-bone cultures, both after 4 and 24h, and accordingly jaw osteoclasts were more susceptible to inhibition of prenylation of Rap1a after treatment with BPs for 24h. Surprisingly, differences in BP uptake did not differentially affect osteoclastogenesis. This suggests that jaw osteoclast precursors are less sensitive to bisphosphonates after internalization. This was supported by the finding that gene expression of the anti-apoptotic genes Bcl-2 and Bcl-xL was higher in jaw cells than long bone cells, suggesting that the jaw cells might be more resistant to BP-induced apoptosis. Our findings suggest that bisphosphonates have distinct effects on both populations of osteoclast precursors and support previous findings that osteoclasts and precursors are bone-site specific. This study may help to provide more insights into bone-site-specific responses to bisphosphonates.


Asunto(s)
Conservadores de la Densidad Ósea/metabolismo , Células de la Médula Ósea/metabolismo , Maxilares/citología , Animales , Conservadores de la Densidad Ósea/farmacología , Difosfonatos/metabolismo , Difosfonatos/farmacología , Endocitosis , Citometría de Flujo , Masculino , Ratones , Microscopía Confocal , Osteoclastos/metabolismo , Osteonecrosis/metabolismo
5.
Nat Rev Endocrinol ; 9(9): 522-36, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23877423

RESUMEN

Osteopetrosis is a genetic condition of increased bone mass, which is caused by defects in osteoclast formation and function. Both autosomal recessive and autosomal dominant forms exist, but this Review focuses on autosomal recessive osteopetrosis (ARO), also known as malignant infantile osteopetrosis. The genetic basis of this disease is now largely uncovered: mutations in TCIRG1, CLCN7, OSTM1, SNX10 and PLEKHM1 lead to osteoclast-rich ARO (in which osteoclasts are abundant but have severely impaired resorptive function), whereas mutations in TNFSF11 and TNFRSF11A lead to osteoclast-poor ARO. In osteoclast-rich ARO, impaired endosomal and lysosomal vesicle trafficking results in defective osteoclast ruffled-border formation and, hence, the inability to resorb bone and mineralized cartilage. ARO presents soon after birth and can be fatal if left untreated. However, the disease is heterogeneous in clinical presentation and often misdiagnosed. This article describes the genetics of ARO and discusses the diagnostic role of next-generation sequencing methods. The management of affected patients, including guidelines for the indication of haematopoietic stem cell transplantation (which can provide a cure for many types of ARO), are outlined. Finally, novel treatments, including preclinical data on in utero stem cell treatment, RANKL replacement therapy and denosumab therapy for hypercalcaemia are also discussed.


Asunto(s)
Osteopetrosis/terapia , Animales , Humanos , Osteopetrosis/congénito , Osteopetrosis/diagnóstico , Osteopetrosis/genética , Ligando RANK/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología
6.
Methods Mol Biol ; 816: 159-75, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22130928

RESUMEN

Osteoclasts are multi-nucleated cells that have the unique ability to resorb calcified bone matrix. They derive from haematopoietic precursor cells, and can be generated in vitro by stimulation of peripheral blood mononuclear cells with the cytokines M-CSF and RANKL. In this chapter, we describe the method for generating human osteoclast from peripheral blood or buffy coats, as well as methods for studying both the differentiation and resorbing activity of these cells.


Asunto(s)
Capa Leucocitaria de la Sangre/citología , Técnicas de Cultivo de Célula/métodos , Leucocitos Mononucleares/citología , Osteoclastos/citología , Fosfatasa Ácida/metabolismo , Resorción Ósea , Diferenciación Celular , Colágeno/metabolismo , Criopreservación/métodos , Humanos , Integrina alfaVbeta3/análisis , Isoenzimas/metabolismo , Leucocitos Mononucleares/inmunología , Receptores de Lipopolisacáridos/análisis , Receptores de Lipopolisacáridos/inmunología , Factor Estimulante de Colonias de Macrófagos/inmunología , Macrófagos/citología , Osteoclastos/inmunología , Osteoclastos/metabolismo , Osteogénesis , Ligando RANK/inmunología , Fosfatasa Ácida Tartratorresistente
7.
Bone ; 49(1): 111-21, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21419243

RESUMEN

The described ability of phosphonocarboxylate analogues of bisphosphonates (BPs) to inhibit Rab geranylgeranyl transferase (RGGT) is thought to be the mechanism underlying their cellular effects, including their ability to reduce macrophage cell viability and to inhibit osteoclast-mediated resorption. However, until now the possibility that at least some of the effects of these drugs may be mediated through other targets has not been excluded. Since RGGT is the most distal enzyme in the process of Rab prenylation, it has not proved possible to confirm the mechanism underlying the effects of these drugs by adding back downstream intermediates of the mevalonate pathway, the approach used to demonstrate that bisphosphonates act through this pathway. We now confirm that RGGT is the major pharmacological target of phosphonocarboxylates by using several alternative approaches. Firstly, analysis of several different phosphonocarboxylate drugs demonstrates a very good correlation between the ability of these drugs to inhibit RGGT with their ability to: (a) reduce macrophage cell viability; (b) induce apoptosis; and (c) induce vacuolation in rabbit osteoclasts. Secondly, we have found that cells from the gunmetal (gm/gm) mouse, which bear a homozygous mutation in RGGT that results in ~80% reduced activity of this enzyme compared to wild-type or heterozygous mice, are more sensitive to the effects of active phosphonocarboxylates (including reducing macrophage cell viability, inhibiting osteoclast formation and inhibiting fluid-phase endocytosis), confirming that these effects are mediated through inhibition of RGGT. In conclusion, these data demonstrate that all of the pharmacological effects of phosphonocarboxylates found thus far appear to be mediated through the specific inhibition of RGGT, highlighting the potential therapeutic value of this class of drugs.


Asunto(s)
Transferasas Alquil y Aril/antagonistas & inhibidores , Difosfonatos/metabolismo , Difosfonatos/farmacología , Transferasas Alquil y Aril/metabolismo , Animales , Apoptosis/efectos de los fármacos , Recuento de Células , Línea Celular , Supervivencia Celular/efectos de los fármacos , Diterpenos/farmacología , Endocitosis/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Heterocigoto , Macrófagos/efectos de los fármacos , Macrófagos/enzimología , Ratones , Ratones Endogámicos , Osteoblastos/efectos de los fármacos , Osteoblastos/enzimología , Osteoclastos/efectos de los fármacos , Osteoclastos/enzimología , Prenilación de Proteína/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Piridinas/farmacología , Conejos , Vacuolas/efectos de los fármacos , Vacuolas/metabolismo
8.
Bone ; 49(1): 34-41, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21111853

RESUMEN

This review describes the key discoveries over the last 15 years that have led to a clearer understanding of the molecular mechanisms by which bisphosphonate drugs inhibit bone resorption. Once released from bone mineral surfaces during bone resorption, these agents accumulate intracellularly in osteoclasts. Simple bisphosphonates such as clodronate are incorporated into non-hydrolysable analogues of adenosine triphosphate, which induce osteoclast apoptosis. The considerably more potent nitrogen-containing bisphosphonates are not metabolised but potently inhibit farnesyl pyrophosphate (FPP) synthase, a key enzyme of the mevalonate pathway. This prevents the synthesis of isoprenoid lipids necessary for the post-translational prenylation of small GTPases, thereby disrupting the subcellular localisation and normal function of these essential signalling proteins. Inhibition of FPP synthase also results in the accumulation of the upstream metabolite isopentenyl diphosphate, which is incorporated into the toxic nucleotide metabolite ApppI. Together, these properties explain the ability of bisphosphonate drugs to inhibit bone resorption by disrupting osteoclast function and survival. These discoveries are also giving insights into some of the adverse effects of bisphosphonates, such as the acute phase reaction that is triggered by inhibition of FPP synthase in peripheral blood monocytes.


Asunto(s)
Difosfonatos/química , Difosfonatos/farmacología , Animales , Huesos/efectos de los fármacos , Dimetilaliltranstransferasa/antagonistas & inhibidores , Dimetilaliltranstransferasa/metabolismo , Humanos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos , Prenilación de Proteína/efectos de los fármacos
9.
J Bone Miner Res ; 25(3): 676-80, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20422625

RESUMEN

Osteoscleroses are a heterogeneous group of bone remodeling disorders characterized by an increase in bone density. Here we report on a consanguineous Lebanese family in which two sisters, aged 39 and 36 years, exhibit a severe genu varum, a square-face appearance, high forehead, slight proptosis of the eyes, symmetric enlargement of the jaw, protruding chin, and short stature. Bone X-rays showed the presence of hyperostosis of the cranial base and vault with increased density of the orbits, hyperostosis of the bones, thickening of the cortices, diaphyseal modeling defects, cortical thickening of the medullary cavity, mild enlargement of the medullary cavity of the short long bones, short femoral necks, increased width of the ribs, and narrow interpedicular distances of the lower lumbar spine. Osteodensitometry showed values 200% to 300% above values for age. A cervical MRI revealed the presence of a diffuse osteosclerosis with calcification of the posterior vertebral ligament and a narrow canal between C2 and T2. Blood test results were unremarkable. Serum osteocalcin levels were in the normal range, whereas high values of serum C-telopeptide were noted. A bone biopsy showed only the presence of compact bone and did not allow for histomorphometric analysis. Molecular studies excluded genes known to be involved in sclerosing bone dysplasias as the cause of this condition. In vitro analysis of osteoclast function indicated that contrary to most cases of autosomal recessive osteopetrosis, osteoclasts both formed and resorbed but exhibited a small decrease in resorptive activity compared with osteoclasts generated from normal control individuals. Differential diagnoses are discussed, and the possibility that this may be a novel clinical entity is raised.


Asunto(s)
Enfermedades del Desarrollo Óseo/genética , Adulto , Enfermedades del Desarrollo Óseo/complicaciones , Enfermedades del Desarrollo Óseo/patología , Células Cultivadas , Consanguinidad , Diagnóstico Diferencial , Femenino , Genu Varum/complicaciones , Humanos , Líbano , Osteoclastos/metabolismo , Osteosclerosis/complicaciones , Osteosclerosis/genética , Hermanos
10.
J Bone Miner Res ; 25(3): 606-16, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20422624

RESUMEN

Bisphosphonates are effective antiresorptive agents owing to their bone-targeting property and ability to inhibit osteoclasts. It remains unclear, however, whether any non-osteoclast cells are directly affected by these drugs in vivo. Two fluorescent risedronate analogues, carboxyfluorescein-labeled risedronate (FAM-RIS) and Alexa Fluor 647-labeled risedronate (AF647-RIS), were used to address this question. Twenty-four hours after injection into 3-month-old mice, fluorescent risedronate analogues were bound to bone surfaces. More detailed analysis revealed labeling of vascular channel walls within cortical bone. Furthermore, fluorescent risedronate analogues were present in osteocytic lacunae in close proximity to vascular channels and localized to the lacunae of newly embedded osteocytes close to the bone surface. Following injection into newborn rabbits, intracellular uptake of fluorescently labeled risedronate was detected in osteoclasts, and the active analogue FAM-RIS caused accumulation of unprenylated Rap1A in these cells. In addition, CD14(high) bone marrow monocytes showed relatively high levels of uptake of fluorescently labeled risedronate, which correlated with selective accumulation of unprenylated Rap1A in CD14(+) cells, as well as osteoclasts, following treatment with risedronate in vivo. Similar results were obtained when either rabbit or human bone marrow cells were treated with fluorescent risedronate analogues in vitro. These findings suggest that the capacity of different cell types to endocytose bisphosphonate is a major determinant for the degree of cellular drug uptake in vitro as well as in vivo. In conclusion, this study shows that in addition to bone-resorbing osteoclasts, bisphosphonates may exert direct effects on bone marrow monocytes in vivo.


Asunto(s)
Células de la Médula Ósea/metabolismo , Difosfonatos/farmacocinética , Ácido Etidrónico/análogos & derivados , Monocitos/metabolismo , Osteocitos/metabolismo , Animales , Western Blotting , Conservadores de la Densidad Ósea/química , Ácido Etidrónico/síntesis química , Ácido Etidrónico/química , Femenino , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Ratones , Ratones Endogámicos C57BL , Prenilación , Conejos , Ácido Risedrónico , Proteínas de Unión al GTP rap1/metabolismo
11.
J Biol Chem ; 284(11): 6861-8, 2009 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-19074143

RESUMEN

Rab geranylgeranyl transferase (RGGT) catalyzes the post-translational geranylgeranyl (GG) modification of (usually) two C-terminal cysteines in Rab GTPases. Here we studied the mechanism of the Rab geranylgeranylation reaction by bisphosphonate analogs in which one phosphonate group is replaced by a carboxylate (phosphonocarboxylate, PC). The phosphonocarboxylates used were 3-PEHPC, which was previously reported, and 2-hydroxy-3-imidazo[1,2-a]pyridin-3-yl-2-phosphonopropionic acid ((+)-3-IPEHPC), a >25-fold more potent related compound as measured by both IC50 and Ki.(+)-3-IPEHPC behaves as a mixed-type inhibitor with respect to GG pyrophosphate (GGPP) and an uncompetitive inhibitor with respect to Rab substrates. We propose that phosphonocarboxylates prevent only the second GG transfer onto Rabs based on the following evidence. First, geranylgeranylation of Rab proteins ending with a single cysteine motif such as CAAX, is not affected by the inhibitors, either in vitro or in vivo. Second, the addition of an -AAX sequence onto Rab-CC proteins protects the substrate from inhibition by the inhibitors. Third, we demonstrate directly that in the presence of (+)-3-IPEHPC, Rab-CC and Rab-CXC proteins are modified by only a single GG addition. The presence of (+)-3-IPEHPC resulted in a preference for the Rab N-terminal cysteine to be modified first, suggesting an order of cysteine geranylgeranylation in RGGT catalysis. Our results further suggest that the inhibitor binds to a site distinct from the GGPP-binding site on RGGT. We suggest that phosphonocarboxylate inhibitors bind to a GG-cysteine binding site adjacent to the active site, which is necessary to align the mono-GG-Rab for the second GG addition. These inhibitors may represent a novel therapeutic approach in Rab-mediated diseases.


Asunto(s)
Transferasas Alquil y Aril/antagonistas & inhibidores , Difosfonatos/farmacología , Inhibidores Enzimáticos/farmacología , Fosfatos de Poliisoprenilo/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Piridinas/farmacología , Proteínas de Unión al GTP rab/metabolismo , Transferasas Alquil y Aril/metabolismo , Secuencias de Aminoácidos/fisiología , Animales , Sitios de Unión/fisiología , Línea Celular , Perros , Humanos , Estructura Terciaria de Proteína/fisiología
12.
Am J Hum Genet ; 83(1): 64-76, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18606301

RESUMEN

Autosomal-Recessive Osteopetrosis (ARO) comprises a heterogeneous group of bone diseases for which mutations in five genes are known as causative. Most ARO are classified as osteoclast-rich, but recently a subset of osteoclast-poor ARO has been recognized as due to a defect in TNFSF11 (also called RANKL or TRANCE, coding for the RANKL protein), a master gene driving osteoclast differentiation along the RANKL-RANK axis. RANKL and RANK (coded for by the TNFRSF11A gene) also play a role in the immune system, which raises the possibility that defects in this pathway might cause osteopetrosis with immunodeficiency. From a large series of ARO patients we selected a Turkish consanguineous family with two siblings affected by ARO and hypogammaglobulinemia with no defects in known osteopetrosis genes. Sequencing of genes involved in the RANKL downstream pathway identified a homozygous mutation in the TNFRSF11A gene in both siblings. Their monocytes failed to differentiate in vitro into osteoclasts upon exposure to M-CSF and RANKL, in keeping with an osteoclast-intrinsic defect. Immunological analysis showed that their hypogammaglobulinemia was associated with impairment in immunoglobulin-secreting B cells. Investigation of other patients revealed a defect in both TNFRSF11A alleles in six additional, unrelated families. Our results indicate that TNFRSF11A mutations can cause a clinical condition in which severe ARO is associated with an immunoglobulin-production defect.


Asunto(s)
Agammaglobulinemia/sangre , Osteoclastos/patología , Osteopetrosis/genética , Receptor Activador del Factor Nuclear kappa-B/genética , Fosfatasa Ácida/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Argentina , Arginina/metabolismo , Biopsia , Estudios de Casos y Controles , Línea Celular Transformada , Proliferación Celular , Transformación Celular Viral , Células Cultivadas , Estudios de Cohortes , Consanguinidad , Cisteína/metabolismo , Análisis Mutacional de ADN , Dendritas/fisiología , Femenino , Genes Recesivos , Herpesvirus Humano 4/fisiología , Heterocigoto , Homocigoto , Humanos , Ilion/cirugía , Isoenzimas/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/patología , Lipopolisacáridos/farmacología , Factor Estimulante de Colonias de Macrófagos/farmacología , Masculino , Modelos Inmunológicos , Datos de Secuencia Molecular , Mutación Missense , Osteoclastos/metabolismo , Osteoclastos/ultraestructura , Osteopetrosis/diagnóstico , Osteopetrosis/diagnóstico por imagen , Osteopetrosis/patología , Osteopetrosis/fisiopatología , Osteoprotegerina/metabolismo , Pakistán , Linaje , Polimorfismo Genético , Estructura Terciaria de Proteína , Ligando RANK/metabolismo , Radiografía Torácica/métodos , Receptor Activador del Factor Nuclear kappa-B/química , Receptor Activador del Factor Nuclear kappa-B/inmunología , Receptores de Vitronectina/metabolismo
13.
Bone ; 42(5): 848-60, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18325866

RESUMEN

Bisphosphonates (BPs) target bone due to their high affinity for calcium ions. During osteoclastic resorption, these drugs are released from the acidified bone surface and taken up by osteoclasts, where they act by inhibiting the prenylation of small GTPases essential for osteoclast function. However, it remains unclear exactly how osteoclasts internalise BPs from bone and whether other cells in the bone microenvironment can also take up BPs from the bone surface. We have investigated this using a novel fluorescently-labelled alendronate analogue (FL-ALN), and by examining changes in protein prenylation following treatment of cells with risedronate (RIS). Confocal microscopic analysis showed that FL-ALN was efficiently internalised from solution or from the surface of dentine by resorbing osteoclasts into intracellular vesicles. Accordingly, unprenylated Rap1A accumulated to the same extent whether osteoclasts were cultured on RIS-coated dentine or with RIS in solution. By contrast, J774 macrophages internalised FL-ALN and RIS from solution, but took up comparatively little from dentine, due to their inability to resorb the mineral. Calvarial osteoblasts and MCF-7 tumour cells internalised even less FL-ALN and RIS, both from solution and from the surface of dentine. Accordingly, the viability of J774 and MCF-7 cells was drastically reduced when cultured with RIS in solution, but not when cultured on dentine pre-coated with RIS. However, when J774 macrophages were co-cultured with rabbit osteoclasts, J774 cells that were adjacent to resorbing osteoclasts frequently internalised more FL-ALN than J774 cells more distant from osteoclasts. This was possibly a result of increased availability of BP to these J774 cells due to transcytosis through osteoclasts, since FL-ALN partially co-localised with trancytosed, resorbed matrix protein within osteoclasts. In addition, J774 cells occupying resorption pits internalised more FL-ALN than those on unresorbed surfaces. These data demonstrate that osteoclasts are able to take up large amounts of BP, due to their ability to release the BP from the dentine surface during resorption. By contrast, non-resorbing cells take up only small amounts of BP that becomes available due to natural desorption from the dentine surface. However, BP uptake by non-resorbing cells can be increased when cultured in the presence of resorbing osteoclasts.


Asunto(s)
Dentina/metabolismo , Difosfonatos/metabolismo , Macrófagos/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Alendronato/metabolismo , Animales , Conservadores de la Densidad Ósea/metabolismo , Conservadores de la Densidad Ósea/farmacocinética , Conservadores de la Densidad Ósea/farmacología , Resorción Ósea/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Técnicas de Cocultivo , Difosfonatos/farmacocinética , Difosfonatos/farmacología , Endocitosis/fisiología , Ácido Etidrónico/análogos & derivados , Ácido Etidrónico/metabolismo , Ácido Etidrónico/farmacocinética , Ácido Etidrónico/farmacología , Proteínas de la Matriz Extracelular/metabolismo , Macrófagos/citología , Ratones , Microscopía Fluorescente , Osteoblastos/citología , Osteoclastos/citología , Prenilación de Proteína/efectos de los fármacos , Conejos , Ácido Risedrónico , Cráneo/citología , Proteínas de Unión al GTP rap1/metabolismo
14.
Ann N Y Acad Sci ; 1117: 209-57, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18056045

RESUMEN

The bisphosphonates (BPs) are well established as the treatments of choice for disorders of excessive bone resorption, including Paget's disease of bone, myeloma and bone metastases, and osteoporosis. There is considerable new knowledge about how BPs work. Their classical pharmacological effects appear to result from two key properties: their affinity for bone mineral and their inhibitory effects on osteoclasts. Mineral binding affinities differ among the clinically used BPs and may influence their differential distribution within bone, their biological potency, and their duration of action. The inhibitory effects of the nitrogen-containing BPs (including alendronate, risedronate, ibandronate, and zoledronate) on osteoclasts appear to result from their inhibition of farnesyl pyrophosphate synthase (FPPS), a key branch-point enzyme in the mevalonate pathway. FPPS generates isoprenoid lipids used for the posttranslational modification of small GTP-binding proteins essential for osteoclast function. Effects on other cellular pathways, such as preventing apoptosis in osteocytes, are emerging as other potentially important mechanisms of action. As a class, BPs share several common properties. However, as with other classes of drugs, there are obvious chemical, biochemical, and pharmacological differences among the various individual BPs. Each BP has a unique profile that may help to explain potential important clinical differences among the BPs, in terms of speed of onset of fracture reduction, antifracture efficacy at different skeletal sites, and the degree and duration of suppression of bone turnover. As we approach the 40th anniversary of the discovery of their biological effects, there remain further opportunities for using their properties for medical purposes.


Asunto(s)
Difosfonatos/química , Difosfonatos/farmacología , Osteoclastos/metabolismo , Animales , Neoplasias Óseas/secundario , Resorción Ósea , Huesos/metabolismo , Difosfonatos/uso terapéutico , Guanosina Trifosfato/química , Humanos , Modelos Biológicos , Modelos Químicos , Mieloma Múltiple/metabolismo , Metástasis de la Neoplasia , Nitrógeno/química , Osteocitos/metabolismo , Osteoporosis/terapia , Procesamiento Proteico-Postraduccional , Linfocitos T/metabolismo , Resultado del Tratamiento
15.
Nat Genet ; 39(8): 960-2, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17632511

RESUMEN

Autosomal recessive osteopetrosis is usually associated with normal or elevated numbers of nonfunctional osteoclasts. Here we report mutations in the gene encoding RANKL (receptor activator of nuclear factor-KB ligand) in six individuals with autosomal recessive osteopetrosis whose bone biopsy specimens lacked osteoclasts. These individuals did not show any obvious defects in immunological parameters and could not be cured by hematopoietic stem cell transplantation; however, exogenous RANKL induced formation of functional osteoclasts from their monocytes, suggesting that they could, theoretically, benefit from exogenous RANKL administration.


Asunto(s)
Osteopetrosis/genética , Ligando RANK/genética , Animales , Consanguinidad , Femenino , Genes Recesivos , Humanos , Masculino , Ratones , Osteoclastos , Linaje
16.
J Bone Miner Res ; 21(5): 684-94, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16734383

RESUMEN

UNLABELLED: N-BPs, which inhibit bone resorption by preventing prenylation of small GTPases, unexpectedly cause the accumulation of GTP-bound, unprenylated Rho family GTPases in macrophages and osteoclasts. In macrophages, this also leads to sustained, Rac-mediated activation of p38. The antiresorptive activity of N-BPs may therefore be caused at least in part, by the accumulation of unprenylated small GTPases, causing inappropriate activation of downstream signaling pathways. INTRODUCTION: Nitrogen-containing bisphosphonates (N-BPs) are potent inhibitors of bone resorption that act by inhibiting farnesyl diphosphate synthase, thereby indirectly preventing the prenylation of Rho family GTPases that are required for the function and survival of bone-resorbing osteoclasts. However, the effect that these drugs have on the activity of Rho family GTPases has not been determined. MATERIALS AND METHODS: The effect of N-BPs on the activity of Rho family GTPases in J774 macrophages and osteoclasts was measured using a pull-down assay to isolate the GTP-bound forms. The effect of N-BPs, or decreasing Rac expression using siRNA, on downstream p38 activity was evaluated by Western blotting and apoptosis assessed by measurement of caspase 3/7 activity. RESULTS: Rather than inhibiting GTPase function, loss of prenylation after treatment with N-BPs caused an increase in the GTP-bound form of Rac, Cdc42, and Rho in J774 cells and osteoclast-like cells, which paralleled the rate of accumulation of unprenylated small GTPases. Activation of Rac also occurred with other inhibitors of prenylation of Rho-family proteins, such as mevastatin and the geranylgeranyl transferase I inhibitor GGTI-298. The Rac-GTP that increased after N-BP treatment was newly translated, cytoplasmic unprenylated protein, because it was not labeled with [(14)C] mevalonate, and the increase in Rac-GTP was prevented by cycloheximide. Furthermore, this unprenylated Rac-GTP retained at least part of its functional activity in J774 cells, because it mediated N-BP-induced activation of p38. Paradoxically, although risedronate induces apoptosis of J774 macrophages by inhibiting protein prenylation, the p38 inhibitor SB203580 enhanced N-BP-induced apoptosis, suggesting that Rac-induced p38 activation partially suppresses the pro-apoptotic effect of N-BPs in these cells. CONCLUSIONS: N-BP drugs may disrupt the function of osteoclasts in vivo and affect other cell types in vitro by inhibiting protein prenylation, thereby causing inappropriate and sustained activation, rather than inhibition, of some small GTPases and their downstream signaling pathways.


Asunto(s)
Difosfonatos/farmacología , Prenilación de Proteína/efectos de los fármacos , Proteína de Unión al GTP cdc42/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Animales , Western Blotting , Línea Celular , Activación Enzimática , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
17.
Mol Pharmacol ; 69(5): 1624-32, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16501031

RESUMEN

Bisphosphonates such as alendronate and zoledronate are blockbuster drugs used to inhibit osteoclast-mediated bone resorption. Although the molecular mechanisms by which bisphosphonates affect osteoclasts are now evident, the exact route by which they are internalized by cells is not known. To clarify this, we synthesized a novel, fluorescently labeled analog of alendronate (AF-ALN). AF-ALN was rapidly internalized into intracellular vesicles in J774 macrophages and rabbit osteoclasts; uptake of AF-ALN or [14C]zoledronate was stimulated by the presence of Ca2+ and Sr2+ and could be inhibited by addition of EGTA or clodronate, both of which chelate calcium ions. Both EGTA and clodronate also prevented the bisphosphonate-induced inhibition of Rap1A prenylation, an effect that was reversed by addition of Ca2+. In J774 cells and osteoclasts, vesicular AF-ALN colocalized with dextran (but not wheat germ agglutinin or transferrin), and uptake of AF-ALN or [14C]zoledronate was inhibited by dansylcadaverine, indicating that fluid-phase endocytosis is involved in the initial internalization of bisphosphonate into vesicles. Endosomal acidification then seems to be absolutely required for exit of bisphosphonate from vesicles and entry into the cytosol, because monensin and bafilomycin A1, both inhibitors of endosomal acidification, did not inhibit vesicular uptake of AF-ALN or internalization of [14C]zoledronate but prevented the inhibitory effect of alendronate or zoledronate on Rap1A prenylation. Taken together, these results demonstrate that cellular uptake of bisphosphonate drugs requires fluid-phase endocytosis and is enhanced by Ca2+ ions, whereas transfer from endocytic vesicles into the cytosol requires endosomal acidification.


Asunto(s)
Alendronato/farmacocinética , Ácido Clodrónico/farmacocinética , Citosol/metabolismo , Endocitosis/fisiología , Animales , Transporte Biológico/efectos de los fármacos , Calcio/farmacología , Línea Celular , Ácido Egtácico/farmacología , Citometría de Flujo , Colorantes Fluorescentes , Cinética , Macrófagos , Ratones , Microscopía Confocal , Estroncio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA