Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Appl Ecol ; 59(6): 1548-1558, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36467865

RESUMEN

Pathogen management strategies in wildlife are typically accompanied by an array of uncertainties such as the efficacy of vaccines or potential unintended consequences of interventions. In the context of such uncertainties, models of disease transmission can provide critical insight for optimizing pathogen management, especially for species of conservation concern. The endangered Florida panther experienced an outbreak of feline leukemia virus (FeLV) in 2002-04, and continues to be affected by this deadly virus. Ongoing management efforts aim to mitigate the effects of FeLV on panthers, but with limited information about which strategies may be most effective and efficient.We used a simulation-based approach to determine optimal FeLV management strategies in panthers. We simulated use of proactive FeLV management strategies (i.e., proactive vaccination) and several reactive strategies, including reactive vaccination and test-and-removal. Vaccination strategies accounted for imperfect vaccine-induced immunity, specifically partial immunity in which all vaccinates achieve partial pathogen protection. We compared the effectiveness of these different strategies in mitigating the number of FeLV mortalities and the duration of outbreaks.Results showed that inadequate proactive vaccination can paradoxically increase the number of disease-induced mortalities in FeLV outbreaks. These effects were most likely due to imperfect vaccine immunity causing vaccinates to serve as a semi-susceptible population, thereby allowing outbreaks to persist in circumstances otherwise conducive to fadeout. Combinations of proactive vaccination with reactive test-and-removal or vaccination, however, had a synergistic effect in reducing impacts of FeLV outbreaks, highlighting the importance of using mixed strategies in pathogen management.Synthesis and applications: Management-informed disease simulations are an important tool for identifying unexpected negative consequences and synergies among pathogen management strategies. In particular, we find that imperfect vaccine-induced immunity necessitates further consideration to avoid unintentionally worsening epidemics in some conditions. However, mixing proactive and reactive interventions can improve pathogen control while mitigating uncertainties associated with imperfect interventions.

2.
Front Vet Sci ; 9: 940007, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36157183

RESUMEN

Identifying drivers of transmission-especially of emerging pathogens-is a formidable challenge for proactive disease management efforts. While close social interactions can be associated with microbial sharing between individuals, and thereby imply dynamics important for transmission, such associations can be obscured by the influences of factors such as shared diets or environments. Directly-transmitted viral agents, specifically those that are rapidly evolving such as many RNA viruses, can allow for high-resolution inference of transmission, and therefore hold promise for elucidating not only which individuals transmit to each other, but also drivers of those transmission events. Here, we tested a novel approach in the Florida panther, which is affected by several directly-transmitted feline retroviruses. We first inferred the transmission network for an apathogenic, directly-transmitted retrovirus, feline immunodeficiency virus (FIV), and then used exponential random graph models to determine drivers structuring this network. We then evaluated the utility of these drivers in predicting transmission of the analogously transmitted, pathogenic agent, feline leukemia virus (FeLV), and compared FIV-based predictions of outbreak dynamics against empirical FeLV outbreak data. FIV transmission was primarily driven by panther age class and distances between panther home range centroids. FIV-based modeling predicted FeLV dynamics similarly to common modeling approaches, but with evidence that FIV-based predictions captured the spatial structuring of the observed FeLV outbreak. While FIV-based predictions of FeLV transmission performed only marginally better than standard approaches, our results highlight the value of proactively identifying drivers of transmission-even based on analogously-transmitted, apathogenic agents-in order to predict transmission of emerging infectious agents. The identification of underlying drivers of transmission, such as through our workflow here, therefore holds promise for improving predictions of pathogen transmission in novel host populations, and could provide new strategies for proactive pathogen management in human and animal systems.

3.
Sci Rep ; 11(1): 3722, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33580121

RESUMEN

The presence of many pathogens varies in a predictable manner with latitude, with infections decreasing from the equator towards the poles. We investigated the geographic trends of pathogens infecting a widely distributed carnivore: the gray wolf (Canis lupus). Specifically, we investigated which variables best explain and predict geographic trends in seroprevalence across North American wolf populations and the implications of the underlying mechanisms. We compiled a large serological dataset of nearly 2000 wolves from 17 study areas, spanning 80° longitude and 50° latitude. Generalized linear mixed models were constructed to predict the probability of seropositivity of four important pathogens: canine adenovirus, herpesvirus, parvovirus, and distemper virus-and two parasites: Neospora caninum and Toxoplasma gondii. Canine adenovirus and herpesvirus were the most widely distributed pathogens, whereas N. caninum was relatively uncommon. Canine parvovirus and distemper had high annual variation, with western populations experiencing more frequent outbreaks than eastern populations. Seroprevalence of all infections increased as wolves aged, and denser wolf populations had a greater risk of exposure. Probability of exposure was positively correlated with human density, suggesting that dogs and synanthropic animals may be important pathogen reservoirs. Pathogen exposure did not appear to follow a latitudinal gradient, with the exception of N. caninum. Instead, clustered study areas were more similar: wolves from the Great Lakes region had lower odds of exposure to the viruses, but higher odds of exposure to N. caninum and T. gondii; the opposite was true for wolves from the central Rocky Mountains. Overall, mechanistic predictors were more informative of seroprevalence trends than latitude and longitude. Individual host characteristics as well as inherent features of ecosystems determined pathogen exposure risk on a large scale. This work emphasizes the importance of biogeographic wildlife surveillance, and we expound upon avenues of future research of cross-species transmission, spillover, and spatial variation in pathogen infection.


Asunto(s)
Exposición a Riesgos Ambientales , Modelos Epidemiológicos , Infecciones/veterinaria , Lobos/virología , Animales , Efectos Antropogénicos , Femenino , Humanos , Infecciones/epidemiología , Infecciones/etiología , Infecciones/transmisión , Masculino , América del Norte/epidemiología , Estudios Seroepidemiológicos , Lobos/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA