Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Biol Cell ; 35(3): ar36, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38170579

RESUMEN

Transporting epithelial cells of the gut and kidney interact with their luminal environment through a densely packed collection of apical microvilli known as a brush border (BB). Proper brush border assembly depends on the intermicrovillar adhesion complex (IMAC), a protocadherin-based adhesion complex found at the distal tips of microvilli that mediates adhesion between neighboring protrusions to promote their organized packing. Loss of the IMAC adhesion molecule Cadherin-related family member 5 (CDHR5) results in significant brush border defects, though the functional properties of this protocadherin have not been thoroughly explored. Here, we show that the cytoplasmic tail of CDHR5 contributes to its correct apical targeting and functional properties in an isoform-specific manner. Library screening identified the Ezrin-associated scaffolds EBP50 and E3KARP as cytoplasmic binding partners for CDHR5. Consistent with this, loss of EBP50 disrupted proper brush border assembly with cells exhibiting markedly reduced apical IMAC levels. Together, our results shed light on the apical targeting determinants of CDHR5 and further define the interactome of the IMAC involved in brush border assembly.


Asunto(s)
Células Epiteliales , Protocadherinas , Microvellosidades/metabolismo , Células Epiteliales/metabolismo
2.
Mol Biol Cell ; 32(21): ar30, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34473561

RESUMEN

MyTH4-FERM (MF) myosins evolved to play a role in the creation and function of a variety of actin-based membrane protrusions that extend from cells. Here we performed an analysis of the MF myosins, Myo7A, Myo7B, and Myo10, to gain insight into how they select for their preferred actin networks. Using enterocytes that create spatially separated actin tracks in the form of apical microvilli and basal filopodia, we show that actin track selection is principally guided by the mode of oligomerization of the myosin along with the identity of the motor domain, with little influence from the specific composition of the lever arm. Chimeric variants of Myo7A and Myo7B fused to a leucine zipper parallel dimerization sequence in place of their native tails both selected apical microvilli as their tracks, while a truncated Myo10 used its native antiparallel coiled-coil to traffic to the tips of filopodia. Swapping lever arms between the Class 7 and 10 myosins did not change actin track preference. Surprisingly, fusing the motor-neck region of Myo10 to a leucine zipper or oligomerization sequences derived from the Myo7A and Myo7B cargo proteins USH1G and ANKS4B, respectively, re-encoded the actin track usage of Myo10 to apical microvilli with significant efficiency.


Asunto(s)
Movimiento/fisiología , Miosinas/metabolismo , Dominios Proteicos/fisiología , Actinas/metabolismo , Células CACO-2 , Enterocitos/metabolismo , Células HEK293 , Humanos , Microvellosidades/metabolismo , Miosinas/genética , Fagocitosis/fisiología , Dominios Proteicos/genética , Seudópodos/metabolismo
3.
J Biol Chem ; 295(48): 16191-16206, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33051206

RESUMEN

Solute transporting epithelial cells build arrays of microvilli on their apical surface to increase membrane scaffolding capacity and enhance function potential. In epithelial tissues such as the kidney and gut, microvilli are length-matched and assembled into tightly packed "brush borders," which are organized by ∼50-nm thread-like links that form between the distal tips of adjacent protrusions. Composed of protocadherins CDHR2 and CDHR5, adhesion links are stabilized at the tips by a cytoplasmic tripartite module containing the scaffolds USH1C and ANKS4B and the actin-based motor MYO7B. Because several questions about the formation and function of this "intermicrovillar adhesion complex" remain open, we devised a system that allows one to study individual binary interactions between specific complex components and MYO7B. Our approach employs a chimeric myosin consisting of the MYO10 motor domain fused to the MYO7B cargo-binding tail domain. When expressed in HeLa cells, which do not normally produce adhesion complex proteins, this chimera trafficked to the tips of filopodia and was also able to transport individual complex components to these sites. Unexpectedly, the MYO10-MYO7B chimera was able to deliver CDHR2 and CDHR5 to distal tips in the absence of USH1C or ANKS4B. Cells engineered to localize high levels of CDHR2 at filopodial tips acquired interfilopodial adhesion and exhibited a striking dynamic length-matching activity that aligned distal tips over time. These findings deepen our understanding of mechanisms that promote the distal tip accumulation of intermicrovillar adhesion complex components and also offer insight on how epithelial cells minimize microvillar length variability.


Asunto(s)
Bioensayo , Cadherinas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Microvellosidades/metabolismo , Miosinas/metabolismo , Células CACO-2 , Proteínas Relacionadas con las Cadherinas , Cadherinas/genética , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Proteínas del Citoesqueleto/genética , Células HeLa , Humanos , Microvellosidades/genética , Miosinas/genética
4.
Elife ; 72018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30540249

RESUMEN

The sarcomere is the contractile unit within cardiomyocytes driving heart muscle contraction. We sought to test the mechanisms regulating actin and myosin filament assembly during sarcomere formation. Therefore, we developed an assay using human cardiomyocytes to monitor sarcomere assembly. We report a population of muscle stress fibers, similar to actin arcs in non-muscle cells, which are essential sarcomere precursors. We show sarcomeric actin filaments arise directly from muscle stress fibers. This requires formins (e.g., FHOD3), non-muscle myosin IIA and non-muscle myosin IIB. Furthermore, we show short cardiac myosin II filaments grow to form ~1.5 µm long filaments that then 'stitch' together to form the stack of filaments at the core of the sarcomere (i.e., the A-band). A-band assembly is dependent on the proper organization of actin filaments and, as such, is also dependent on FHOD3 and myosin IIB. We use this experimental paradigm to present evidence for a unifying model of sarcomere assembly.


Asunto(s)
Fibras Musculares Esqueléticas/metabolismo , Miocitos Cardíacos/metabolismo , Sarcómeros/metabolismo , Fibras de Estrés/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Línea Celular , Línea Celular Tumoral , Forminas , Células HeLa , Humanos , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Microscopía Confocal , Proteínas Motoras Moleculares/genética , Proteínas Motoras Moleculares/metabolismo , Fibras Musculares Esqueléticas/citología , Miocitos Cardíacos/citología , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo IIB no Muscular/genética , Miosina Tipo IIB no Muscular/metabolismo , Interferencia de ARN
5.
Curr Biol ; 26(20): 2717-2728, 2016 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-27666969

RESUMEN

Transporting epithelial cells interact with the luminal environment using a tightly packed array of microvilli known as the brush border. During intestinal epithelial differentiation, microvillar packing and organization are driven by cadherin-dependent adhesion complexes that localize to the distal tips of microvilli, where they drive physical interactions between neighboring protrusions. Although enrichment of the "intermicrovillar adhesion complex" (IMAC) at distal tips is required for proper function, the mechanism driving tip accumulation of these factors remains unclear. Here, we report that the actin-based motor myosin-7b (Myo7b) promotes the accumulation of IMAC components at microvillar tips. Myo7b is highly enriched at the tips of microvilli in both kidney and intestinal brush borders, and loss of Myo7b in differentiating intestinal epithelial cells disrupts intermicrovillar adhesion and, thus, brush border assembly. Analysis of cells lacking Myo7b revealed that IMAC components and the resulting intermicrovillar adhesion links are mislocalized along the microvillar axis rather than enriched at the distal tips. We also found that Myo7b motor domains are capable of supporting tip-directed transport. However, motor activity is supplemented by other passive targeting mechanisms that together drive highly efficient IMAC accumulation at the tips. These findings illuminate the molecular basis of IMAC enrichment at microvillar tips and hold important implications for understanding apical morphogenesis in transporting and sensory epithelial tissues.


Asunto(s)
Células Epiteliales/metabolismo , Microvellosidades/metabolismo , Cadenas Pesadas de Miosina/genética , Animales , Células CACO-2 , Humanos , Células LLC-PK1 , Cadenas Pesadas de Miosina/metabolismo , Porcinos
6.
Cytoskeleton (Hoboken) ; 73(11): 670-679, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27464680

RESUMEN

Cordon-bleu (COBL) is a multifunctional WASP-Homology 2 (WH2) domain-containing protein implicated in a wide variety of cellular functions ranging from dendritic arborization in neurons to the assembly of microvilli on the surface of transporting epithelial cells. In vitro biochemical studies suggest that COBL is capable of nucleating and severing actin filaments, among other activities. How the multiple activities of COBL observed in vitro contribute to its function in cells remains unclear. Here, we used live imaging to evaluate the impact of COBL expression on the actin cytoskeleton in cultured cells. We found that COBL induces the formation of dynamic linear actin structures throughout the cytosol. We also found that stabilizing these dynamic structures with the parallel actin-bundling protein espin slows down their turnover and enables the robust formation of self-supported protrusions on the dorsal cell surface. Super-resolution imaging revealed a global remodeling of the actin cytoskeleton in cells expressing these two factors. Taken together, these results provide insight as to how COBL contributes to the assembly of actin-based structures such as epithelial microvilli. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Regulación de la Expresión Génica/fisiología , Proteínas de Microfilamentos/metabolismo , Microvellosidades/metabolismo , Proteínas/metabolismo , Citoesqueleto de Actina/genética , Animales , Línea Celular Tumoral , Proteínas del Citoesqueleto , Ratones , Proteínas de Microfilamentos/genética , Microvellosidades/genética , Proteínas/genética
7.
Dev Cell ; 36(2): 190-200, 2016 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-26812018

RESUMEN

Transporting and sensory epithelial cells shape apical specializations using protocadherin-based adhesion. In the enterocyte brush border, protocadherin function requires a complex of cytoplasmic binding partners, although the composition of this complex and logic governing its assembly remain poorly understood. We found that ankyrin repeat and sterile α motif domain containing 4B (ANKS4B) localizes to the tips of adherent brush border microvilli and is essential for intermicrovillar adhesion. ANKS4B interacts with USH1C and MYO7B, which link protocadherins to the actin cytoskeleton. ANKS4B and USH1C also bind to the MYO7B cargo-binding tail at distinct sites. However, a tripartite complex only forms if ANKS4B and MYO7B are first activated by USH1C. This study uncovers an essential role for ANKS4B in brush border assembly, reveals a hierarchy in the molecular interactions that drive intermicrovillar adhesion, and informs our understanding of diseases caused by mutations in USH1C and ankyrin repeat proteins, such as Usher syndrome.


Asunto(s)
Proteínas Portadoras/metabolismo , Citoesqueleto/metabolismo , Enterocitos/metabolismo , Microvellosidades/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adhesión Celular , Proteínas de Ciclo Celular , Membrana Celular/metabolismo , Proteínas del Citoesqueleto , Células Epiteliales/metabolismo , Humanos
8.
Cell ; 157(2): 433-446, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24725409

RESUMEN

Transporting epithelial cells build apical microvilli to increase membrane surface area and enhance absorptive capacity. The intestinal brush border provides an elaborate example with tightly packed microvilli that function in nutrient absorption and host defense. Although the brush border is essential for physiological homeostasis, its assembly is poorly understood. We found that brush border assembly is driven by the formation of Ca(2+)-dependent adhesion links between adjacent microvilli. Intermicrovillar links are composed of protocadherin-24 and mucin-like protocadherin, which target to microvillar tips and interact to form a trans-heterophilic complex. The cytoplasmic domains of microvillar protocadherins interact with the scaffolding protein, harmonin, and myosin-7b, which promote localization to microvillar tips. Finally, a mouse model of Usher syndrome lacking harmonin exhibits microvillar protocadherin mislocalization and severe defects in brush border morphology. These data reveal an adhesion-based mechanism for brush border assembly and illuminate the basis of intestinal pathology in patients with Usher syndrome. PAPERFLICK:


Asunto(s)
Cadherinas/metabolismo , Enterocitos/metabolismo , Microvellosidades/metabolismo , Animales , Células COS , Células CACO-2 , Proteínas Relacionadas con las Cadherinas , Calcio/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Chlorocebus aethiops , Proteínas del Citoesqueleto , Modelos Animales de Enfermedad , Enterocitos/citología , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Microvellosidades/ultraestructura , Miosinas/metabolismo , Síndromes de Usher/patología
9.
Mol Biol Cell ; 24(14): 2216-27, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23699396

RESUMEN

Dictyostelium p21-activated kinase B (PakB) phosphorylates and activates class I myosins. PakB colocalizes with myosin I to actin-rich regions of the cell, including macropinocytic and phagocytic cups and the leading edge of migrating cells. Here we show that residues 1-180 mediate the cellular localization of PakB. Yeast two-hybrid and pull-down experiments identify two proline-rich motifs in PakB-1-180 that directly interact with the SH3 domain of Dictyostelium actin-binding protein 1 (dAbp1). dAbp1 colocalizes with PakB to actin-rich regions in the cell. The loss of dAbp1 does not affect the cellular distribution of PakB, whereas the loss of PakB causes dAbp1 to adopt a diffuse cytosolic distribution. Cosedimentation studies show that the N-terminal region of PakB (residues 1-70) binds directly to actin filaments, whereas dAbp1 exhibits only a low affinity for filamentous actin. PakB-1-180 significantly enhances the binding of dAbp1 to actin filaments. When overexpressed in PakB-null cells, dAbp1 completely blocks early development at the aggregation stage, prevents cell polarization, and significantly reduces chemotaxis rates. The inhibitory effects are abrogated by the introduction of a function-blocking mutation into the dAbp1 SH3 domain. We conclude that PakB plays a critical role in regulating the cellular functions of dAbp1, which are mediated largely by its SH3 domain.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Dictyostelium/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Protozoarias/metabolismo , Citoesqueleto de Actina/genética , Secuencia de Aminoácidos , Polaridad Celular , Quimiotaxis/genética , Dictyostelium/genética , Dictyostelium/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Datos de Secuencia Molecular , Miosinas/genética , Miosinas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas Quinasas/genética , Proteínas Protozoarias/genética , Transducción de Señal
10.
Sci Signal ; 3(111): ra17, 2010 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-20197546

RESUMEN

Dictyostelium discoideum myosin II heavy chain kinase A (MHCK A) disrupts the assembly and cellular activity of bipolar filaments of myosin II by phosphorylating sites within its alpha-helical, coiled-coil tail. MHCK A is a member of the atypical alpha-kinase family of serine and threonine protein kinases and displays no sequence homology to typical eukaryotic protein kinases. We report the crystal structure of the alpha-kinase domain (A-CAT) of MHCK A. When crystallized in the presence of adenosine triphosphate (ATP), A-CAT contained adenosine monophosphate (AMP) at the active site. However, when crystallized in the presence of ATP and a peptide substrate, which does not appear in the structure, adenosine diphosphate (ADP) was found at the active site and an invariant aspartic acid residue (Asp(766)) at the active site was phosphorylated. The aspartylphosphate group was exposed to the solvent within an active-site pocket that might function as a docking site for substrates. Access to the aspartylphosphate was regulated by a conformational switch in a loop that bound to a magnesium ion (Mg(2+)), providing a mechanism that allows alpha-kinases to sense and respond to local changes in Mg(2+).


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/química , Dictyostelium/enzimología , Proteínas Protozoarias/química , Nucleótidos de Adenina/metabolismo , Adenosina Monofosfato/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Dictyostelium/genética , Hidrólisis , Magnesio/metabolismo , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Canales Catiónicos TRPM/química , Canales Catiónicos TRPM/genética
11.
Circ Res ; 100(9): 1328-36, 2007 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-17446433

RESUMEN

Invasion of the subendothelial space by vascular smooth muscle cells (VSMCs) contributes to the development and progression of diverse cardiovascular diseases. In this report we show that the expression of activated versions of Src, Cdc42 and Rac1, or a kinase-dead but open form of the p21-activated kinase (PAK1), induces primary rat aorta VSMCs to form extracellular matrix-degrading actin-rich protrusions that are morphologically similar to the invadopodia formed by highly invasive tumor cells. The matrix-degrading structures are enriched in known markers for invadopodia, including cortactin and tyrosine-phosphorylated cortactin and contain the matrix metalloproteinases MMP-9 and MT1-MMP and the urokinase plasminogen activator receptor (uPAR). In contrast to other cell types, invadopodia formation in VSMCs is only weakly supported by the phorbol ester PBDu. Invadopodia formation by Src was dependent on Cdc42, Rac, and ERK, but not on p38 MAPK. Invadopodia formation induced by kinase-dead PAK1 required Src and ERK activity and a direct interaction with the exchange factor PIX. VSMCs embedded in a three-dimensional collagen matrix formed actin- and cortactin-rich extensions that penetrated through holes in the matrix, suggesting that invadopodia-like structures are formed in a three-dimensional environment.


Asunto(s)
Aorta/citología , Extensiones de la Superficie Celular/metabolismo , Matriz Extracelular/metabolismo , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/fisiología , Animales , Movimiento Celular , Células Cultivadas , Colágeno/metabolismo , Microscopía Fluorescente , Músculo Liso Vascular/metabolismo , Forbol 12,13-Dibutirato/farmacología , Proteínas Serina-Treonina Quinasas/fisiología , Ratas , Proteína de Unión al GTP cdc42/fisiología , Quinasas p21 Activadas , Proteínas de Unión al GTP rac/fisiología , Familia-src Quinasas/fisiología
12.
J Biol Chem ; 281(10): 6307-15, 2006 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-16415352

RESUMEN

Dictyostelium discoideum MyoB is a single-headed class I myosin. Analysis of purified MyoB by SDS-PAGE indicated the presence of an approximately 9-kDa light chain. A tryptic digest of MyoB yielded a partial sequence for the light chain that exactly matched a sequence in a 73-amino acid, 8,296-Da protein (dictyBase number DDB0188713). This protein, termed MlcB, contains two EF-hand motifs and shares approximately 30% sequence identity with the N- and C-terminal lobes of calmodulin. FLAG-MlcB expressed in Dictyostelium co-immunoprecipitated with MyoB but not with the related class myosins and MyoD. Recombinant MlcB bound Ca2+ with a Kd value of 0.2 microm and underwent a Ca2+-induced change in conformation that increased alpha-helical content and surface hydrophobicity. Mutational analysis showed that the first EF-hand was responsible for Ca2+ binding. In the presence and absence of Ca2+ MlcB was a monomer in solution and bound to a MyoB IQ motif peptide with a Kd value of approximately 0.5 microm. A MyoB head-neck construct with a Ser to Glu mutation at the TEDS site bound MlcB and displayed an actin-activated Mg2+ ATPase activity that was insensitive to Ca2+. We conclude that MlcB represents a novel type of small myosin light chain that binds to IQ motifs in a manner comparable with a single lobe of a typical four-EF-hand protein.


Asunto(s)
Dictyostelium , Cadenas Ligeras de Miosina/química , Miosina Tipo I/química , Proteínas Protozoarias/química , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Cromatografía Líquida de Alta Presión , Motivos EF Hand , Electroforesis en Gel de Poliacrilamida , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Peso Molecular , Cadenas Ligeras de Miosina/clasificación , Cadenas Ligeras de Miosina/genética , Miosina Tipo I/genética , Oligopéptidos , Péptidos , Unión Proteica , Conformación Proteica , Proteínas Protozoarias/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA