Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Clin Invest ; 131(8)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33667197

RESUMEN

BACKGROUNDRejection is the primary barrier to broader implementation of vascularized composite allografts (VCAs), including face and limb transplants. The immunologic pathways activated in face transplant rejection have not been fully characterized.METHODSUsing skin biopsies prospectively collected over 9 years from 7 face transplant patients, we studied rejection by gene expression profiling, histology, immunostaining, and T cell receptor sequencing.RESULTSGrade 1 rejection did not differ significantly from nonrejection, suggesting that it does not represent a pathologic state. In grade 2, there was a balanced upregulation of both proinflammatory T cell activation pathways and antiinflammatory checkpoint and immunomodulatory pathways, with a net result of no tissue injury. In grade 3, IFN-γ-driven inflammation, antigen-presenting cell activation, and infiltration of the skin by proliferative T cells bearing markers of antigen-specific activation and cytotoxicity tipped the balance toward tissue injury. Rejection of VCAs and solid organ transplants had both distinct and common features. VCA rejection was uniquely associated with upregulation of immunoregulatory genes, including SOCS1; induction of lipid antigen-presenting CD1 proteins; and infiltration by T cells predicted to recognize CD1b and CD1c.CONCLUSIONOur findings suggest that the distinct features of VCA rejection reflect the unique immunobiology of skin and that enhancing cutaneous immunoregulatory networks may be a useful strategy in combatting rejection.Trial registrationClinicalTrials.gov NCT01281267.FUNDINGAssistant Secretary of Defense and Health Affairs, through Reconstructive Transplant Research (W81XWH-17-1-0278, W81XWH-16-1-0647, W81XWH-16-1-0689, W81XWH-18-1-0784, W81XWH-1-810798); American Society of Transplantation's Transplantation and Immunology Research Network Fellowship Research Grant; Plastic Surgery Foundation Fellowship from the American Society of Plastic Surgeons; Novo Nordisk Foundation (NNF15OC0014092); Lundbeck Foundation; Aage Bangs Foundation; A.P. Moller Foundation for the Advancement of Medical Science; NIH UL1 RR025758.


Asunto(s)
Presentación de Antígeno , Trasplante Facial , Perfilación de la Expresión Génica , Rechazo de Injerto/inmunología , Lípidos/inmunología , Receptores de Antígenos de Linfocitos T , Piel/inmunología , Linfocitos T/inmunología , Femenino , Estudios de Seguimiento , Rechazo de Injerto/genética , Rechazo de Injerto/patología , Humanos , Masculino , Estudios Prospectivos , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Piel/patología
2.
Front Immunol ; 11: 238, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32153571

RESUMEN

Stimulator of interferon genes (STING) plays a central role in innate immune responses to viral and intracellular bacterial infections, and cellular damage. STING is a cytosolic sensor of cyclic dinucleotides (CDNs) including those produced by pathogenic bacteria and those arising endogenously as products of the DNA sensor cGAS (e.g., 2'3' cGAMP). The two most common alternative allelic variants of STING in humans are STING-R71H-G230A-R293Q (STING-HAQ) and STING-R232H that are found in 20.4% and 13.7-17.6% of the population, respectively. To determine the biologic consequences of these genotypic variations, we generated knock-in mice containing the murine equivalents of each variant and studied their responsiveness to CDNs. Homozygous STING-HAQ (R71H-I229A-R292Q) and STING-R231H mice were found to be unresponsive to all exogenous CDNs tested (ci-di-GMP, ci-di-AMP, 3'3' cGAMP and Rp,Rp-CDA). Responses of homozygous STING-HAQ mice to endogenous 2'3' cGAMP was also greatly impaired. However, homozygous STING-R231H mice are fully responsive to 2'3' cGAMP. Analysis of heterozygous mice revealed reduced responsiveness to exogenous and endogenous CDNs in mice carrying a single copy of STING-HAQ, while STING-R231H heterozygous mice exhibit reduced responsiveness to exogenous but not endogenous CDNs. These findings confirm and extend previous reports by demonstrating differing impact of allelic variation of STING on the ability to sense and respond to exogenous vs. endogenous CDNs. Finally, the STING-R231H variant mouse represents a useful tool with which to examine the relative contributions of STING sensing of exogenous and endogenous CDNs in the context of bacterial infections and CDN-based cancer immunotherapeutics.


Asunto(s)
Mordeduras y Picaduras/metabolismo , Genotipo , Macrófagos/inmunología , Alelos , Animales , Mordeduras y Picaduras/genética , Técnicas de Sustitución del Gen , Ratones , Ratones Transgénicos , Nucleótidos Cíclicos/metabolismo , Polimorfismo Genético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA