Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Commun Biol ; 5(1): 1246, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36380073

RESUMEN

Stromal cells interact with immune cells during initiation and resolution of immune responses, though the precise underlying mechanisms remain to be resolved. Lessons learned from stromal cell-based therapies indicate that environmental signals instruct their immunomodulatory action contributing to immune response control. Here, to the best of our knowledge, we show a novel function for the guanine-exchange factor DOCK2 in regulating immunosuppressive function in three human stromal cell models and by siRNA-mediated DOCK2 knockdown. To identify immune function-related stromal cell molecular signatures, we first reprogrammed mesenchymal stem/progenitor cells (MSPCs) into induced pluripotent stem cells (iPSCs) before differentiating these iPSCs in a back-loop into MSPCs. The iPSCs and immature iPS-MSPCs lacked immunosuppressive potential. Successive maturation facilitated immunomodulation, while maintaining clonogenicity, comparable to their parental MSPCs. Sequential transcriptomics and methylomics displayed time-dependent immune-related gene expression trajectories, including DOCK2, eventually resembling parental MSPCs. Severe combined immunodeficiency (SCID) patient-derived fibroblasts harboring bi-allelic DOCK2 mutations showed significantly reduced immunomodulatory capacity compared to non-mutated fibroblasts. Conditional DOCK2 siRNA knockdown in iPS-MSPCs and fibroblasts also immediately reduced immunomodulatory capacity. Conclusively, CRISPR/Cas9-mediated DOCK2 knockout in iPS-MSPCs also resulted in significantly reduced immunomodulation, reduced CDC42 Rho family GTPase activation and blunted filopodia formation. These data identify G protein signaling as key element devising stromal cell immunomodulation.


Asunto(s)
Proteínas Activadoras de GTPasa , Guanina , Humanos , Proteínas Activadoras de GTPasa/genética , ARN Interferente Pequeño , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Inmunidad , Inmunomodulación
2.
Cells ; 10(12)2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34943829

RESUMEN

Acute myeloid leukemia (AML) cells can secrete trophic factors, including extracellular vesicles (EVs), instructing the stromal leukemic niche. Here, we introduce a scalable workflow for purification of immunomodulatory AML-EVs to compare their phenotype and function to the parental AML cells and their secreted soluble factors. AML cell lines HL-60, KG-1, OCI-AML3, and MOLM-14 released EVs with a peak diameter of approximately 80 nm in serum-free particle-reduced medium. We enriched EVs >100x using tangential flow filtration (TFF) and separated AML-derived soluble factors and cells in parallel. EVs were characterized by electron microscopy, immunoblotting, and flow cytometry, confirming the double-membrane morphology, purity and identity. AML-EVs showed significant enrichment of immune response and leukemia-related pathways in tandem mass-tag proteomics and a significant dose-dependent inhibition of T cell proliferation, which was not observed with AML cells or their soluble factors. Furthermore, AML-EVs dose-dependently reduced NK cell lysis of third-party K-562 leukemia targets. This emphasizes the peculiar role of AML-EVs in leukemia immune escape and indicates novel EV-based targets for therapeutic interventions.


Asunto(s)
Vesículas Extracelulares/metabolismo , Inmunomodulación , Leucemia Mieloide Aguda/inmunología , Línea Celular Tumoral , Proliferación Celular , Vesículas Extracelulares/ultraestructura , Humanos , Terapia de Inmunosupresión , Células Asesinas Naturales/inmunología , Linfocitos T/inmunología
3.
J Leukoc Biol ; 108(6): 1803-1814, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32356366

RESUMEN

B-1 cells are a B-lymphocyte subtype whose roles in immunity are not completely defined. These cells can produce cytokines (mainly IL-10) and natural and specific antibodies. Currently, extracellular vesicles (EVs) released by immune cells have emerged as new important entities in cell-cell communication. Immune cells release EVs that can activate and/or modulate other immune cells. Here, we characterized the EVs released by peritoneal B-1 cells infected or not with Leishmania (Leishmania) amazonensis. This Leishmania species causes cutaneous leishmaniasis and can infect macrophages and B-1 cells. Our results showed that peritoneal B-1 cells spontaneously release EVs, but the parasite stimulated an increase in EVs production by peritoneal B-1 cells. The treatment of BALB/c and C57BL/6 bone marrow-derived macrophages (BMDM) with EVs from infected peritoneal B-1 cells led to differential expression of iNOS, IL-6, IL-10, and TNF-α. Additionally, BALB/c mice previous treated with EVs released by peritoneal B-1 cells showed a significant lower lesion size and parasite burden. Thus, this study demonstrated that peritoneal B-1 cells could release EVs that can alter the functions of macrophages in vitro and in vivo these EVs altered the course of L. amazonensis infection. These findings represent the first evidence that EVs from peritoneal B-1 cells can act as a new mechanism of cellular communication between macrophages and B-1 cells, contributing to immunity against experimental leishmaniasis.


Asunto(s)
Subgrupos de Linfocitos B/inmunología , Comunicación Celular/inmunología , Vesículas Extracelulares/inmunología , Leishmania/inmunología , Leishmaniasis/inmunología , Macrófagos Peritoneales/inmunología , Animales , Subgrupos de Linfocitos B/patología , Citocinas/inmunología , Vesículas Extracelulares/patología , Femenino , Leishmaniasis/patología , Macrófagos Peritoneales/patología , Ratones , Ratones Endogámicos BALB C , Óxido Nítrico Sintasa de Tipo II/inmunología
4.
Artículo en Inglés | MEDLINE | ID: mdl-32266161

RESUMEN

Extracellular vesicles (EVs) shed by trypomastigote forms of Trypanosoma cruzi have the ability to interact with host tissues, increase invasion, and modulate the host innate response. In this study, EVs shed from T. cruzi or T.cruzi-infected macrophages were investigated as immunomodulatory agents during the initial steps of infection. Initially, by scanning electron microscopy and nanoparticle tracking analysis, we determined that T. cruzi-infected macrophages release higher numbers of EVs (50-300 nm) as compared to non-infected cells. Using Toll-like-receptor 2 (TLR2)-transfected CHO cells, we observed that pre-incubation of these host cells with parasite-derived EVs led to an increase in the percentage of infected cells. In addition, EVs from parasite or T.cruzi-infected macrophages or not were able to elicit translocation of NF-κB by interacting with TLR2, and as a consequence, to alter the EVs the gene expression of proinflammatory cytokines (TNF-α, IL-6, and IL-1ß), and STAT-1 and STAT-3 signaling pathways. By proteomic analysis, we observed highly significant changes in the protein composition between non-infected and infected host cell-derived EVs. Thus, we observed the potential of EVs derived from T. cruzi during infection to maintain the inflammatory response in the host.


Asunto(s)
Vesículas Extracelulares , Trypanosoma cruzi , Animales , Cricetinae , Cricetulus , Humanos , Macrófagos , Proteómica , Receptor Toll-Like 2
5.
PLoS Negl Trop Dis ; 8(9): e3161, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25232947

RESUMEN

BACKGROUND: Extracellular vesicles (EVs) are structures with phospholipid bilayer membranes and 100-1000 nm diameters. These vesicles are released from cells upon activation of surface receptors and/or apoptosis. The production of EVs by dendritic cells, mast cells, macrophages, and B and T lymphocytes has been extensively reported in the literature. EVs may express MHC class II and other membrane surface molecules and carry antigens. The aim of this study was to investigate the role of EVs from Leishmania-infected macrophages as immune modulatory particles. METHODOLOGY/PRINCIPAL FINDINGS: In this work it was shown that BALB/c mouse bone marrow-derived macrophages, either infected in vitro with Leishmania amazonensis or left uninfected, release comparable amounts of 50-300 nm-diameter extracellular vesicles (EVs). The EVs were characterized by flow cytometry and electron microscopy. The incubation of naïve macrophages with these EVs for 48 hours led to a statistically significant increase in the production of the cytokines IL-12, IL-1ß, and TNF-α. CONCLUSIONS/SIGNIFICANCE: EVs derived from macrophages infected with L. amazonensis induce other macrophages, which in vivo could be bystander cells, to produce the proinflammatory cytokines IL-12, IL-1ß and TNF-α. This could contribute both to modulate the immune system in favor of a Th1 immune response and to the elimination of the Leishmania, leading, therefore, to the control the infection.


Asunto(s)
Vesículas Extracelulares/inmunología , Leishmania/inmunología , Leishmania/parasitología , Leishmaniasis/inmunología , Macrófagos/inmunología , Macrófagos/parasitología , Animales , Células Cultivadas , Ratones , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA