Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Genet Med ; 24(12): 2501-2515, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36178483

RESUMEN

PURPOSE: The study aimed to identify novel genes for idiopathic hypogonadotropic hypogonadism (IHH). METHODS: A cohort of 1387 probands with IHH underwent exome sequencing and de novo, familial, and cohort-wide investigations. Functional studies were performed on 2 p190 Rho GTPase-activating proteins (p190 RhoGAP), ARHGAP35 and ARHGAP5, which involved in vivo modeling in larval zebrafish and an in vitro p190A-GAP activity assay. RESULTS: Rare protein-truncating variants (PTVs; n = 5) and missense variants in the RhoGAP domain (n = 7) in ARHGAP35 were identified in IHH cases (rare variant enrichment: PTV [unadjusted P = 3.1E-06] and missense [adjusted P = 4.9E-03] vs controls). Zebrafish modeling using gnrh3:egfp phenotype assessment showed that mutant larvae with deficient arhgap35a, the predominant ARHGAP35 paralog in the zebrafish brain, display decreased GnRH3-GFP+ neuronal area, a readout for IHH. In vitro GAP activity studies showed that 1 rare missense variant [ARHGAP35 p.(Arg1284Trp)] had decreased GAP activity. Rare PTVs (n = 2) also were discovered in ARHGAP5, a paralog of ARHGAP35; however, arhgap5 zebrafish mutants did not display significant GnRH3-GFP+ abnormalities. CONCLUSION: This study identified ARHGAP35 as a new autosomal dominant genetic driver for IHH and ARHGAP5 as a candidate gene for IHH. These observations suggest a novel role for the p190 RhoGAP proteins in GnRH neuronal development and integrity.


Asunto(s)
Hipogonadismo , Pez Cebra , Animales , Humanos , Pez Cebra/genética , Hipogonadismo/genética , Hormona Liberadora de Gonadotropina/genética , Proteínas Represoras , Factores de Intercambio de Guanina Nucleótido , Proteínas Activadoras de GTPasa/genética
2.
J Clin Endocrinol Metab ; 107(8): 2228-2242, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35574646

RESUMEN

CONTEXT: The genetic architecture of isolated hypogonadotropic hypogonadism (IHH) has not been completely defined. OBJECTIVE: To determine the role of copy number variants (CNVs) in IHH pathogenicity and define their phenotypic spectrum. METHODS: Exome sequencing (ES) data in IHH probands (n = 1394) (Kallmann syndrome [IHH with anosmia; KS], n = 706; normosmic IHH [nIHH], n = 688) and family members (n = 1092) at the Reproductive Endocrine Unit and the Center for Genomic Medicine of Massachusetts General Hospital were analyzed for CNVs and single nucleotide variants (SNVs)/indels in 62 known IHH genes. IHH subjects without SNVs/indels in known genes were considered "unsolved." Phenotypes associated with CNVs were evaluated through review of patient medical records. A total of 29 CNVs in 13 genes were detected (overall IHH cohort prevalence: ~2%). Almost all (28/29) CNVs occurred in unsolved IHH cases. While some genes (eg, ANOS1 and FGFR1) frequently harbor both CNVs and SNVs/indels, the mutational spectrum of others (eg, CHD7) was restricted to SNVs/indels. Syndromic phenotypes were seen in 83% and 63% of IHH subjects with multigenic and single gene CNVs, respectively. CONCLUSION: CNVs in known genes contribute to ~2% of IHH pathogenesis. Predictably, multigenic contiguous CNVs resulted in syndromic phenotypes. Syndromic phenotypes resulting from single gene CNVs validate pleiotropy of some IHH genes. Genome sequencing approaches are now needed to identify novel genes and/or other elusive variants (eg, noncoding/complex structural variants) that may explain the remaining missing etiology of IHH.


Asunto(s)
Hipogonadismo , Síndrome de Kallmann , Variaciones en el Número de Copia de ADN , Humanos , Hipogonadismo/epidemiología , Hipogonadismo/genética , Síndrome de Kallmann/genética , Mutación , Fenotipo , Prevalencia
3.
Genet Med ; 23(4): 629-636, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33442024

RESUMEN

PURPOSE: SOX10 variants previously implicated in Waardenburg syndrome (WS) have now been linked to Kallmann syndrome (KS), the anosmic form of idiopathic hypogonadotropic hypogonadism (IHH). We investigated whether SOX10-associated WS and IHH represent elements of a phenotypic continuum within a unifying disorder or if they represent phenotypically distinct allelic disorders. METHODS: Exome sequencing from 1,309 IHH subjects (KS: 632; normosmic idiopathic hypogonadotropic hypogonadism [nIIHH]: 677) were reviewed for SOX10 rare sequence variants (RSVs). The genotypic and phenotypic spectrum of SOX10-related IHH (this study and literature) and SOX10-related WS cases (literature) were reviewed and compared with SOX10-RSV spectrum in gnomAD population. RESULTS: Thirty-seven SOX10-associated IHH cases were identified as follows: current study: 16 KS; 4 nIHH; literature: 16 KS; 1 nIHH. Twenty-three IHH cases (62%; all KS), had ≥1 known WS-associated feature(s). Moreover, five previously reported SOX10-associated WS cases showed IHH-related features. Four SOX10 missense RSVs showed allelic overlap between IHH-ascertained and WS-ascertained cases. The SOX10-HMG domain showed an enrichment of RSVs in disease states versus gnomAD. CONCLUSION: SOX10 variants contribute to both anosmic (KS) and normosmic (nIHH) forms of IHH. IHH and WS represent SOX10-associated developmental defects that lie along a unifying phenotypic continuum. The SOX10-HMG domain is critical for the pathogenesis of SOX10-related human disorders.


Asunto(s)
Hipogonadismo , Síndrome de Kallmann , Factores de Transcripción SOXE/genética , Síndrome de Waardenburg , Genotipo , Humanos , Hipogonadismo/genética , Mutación , Síndrome de Waardenburg/genética
4.
Hum Mol Genet ; 29(14): 2435-2450, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32620954

RESUMEN

Dysfunction of the gonadotropin-releasing hormone (GnRH) axis causes a range of reproductive phenotypes resulting from defects in the specification, migration and/or function of GnRH neurons. To identify additional molecular components of this system, we initiated a systematic genetic interrogation of families with isolated GnRH deficiency (IGD). Here, we report 13 families (12 autosomal dominant and one autosomal recessive) with an anosmic form of IGD (Kallmann syndrome) with loss-of-function mutations in TCF12, a locus also known to cause syndromic and non-syndromic craniosynostosis. We show that loss of tcf12 in zebrafish larvae perturbs GnRH neuronal patterning with concomitant attenuation of the orthologous expression of tcf3a/b, encoding a binding partner of TCF12, and stub1, a gene that is both mutated in other syndromic forms of IGD and maps to a TCF12 affinity network. Finally, we report that restored STUB1 mRNA rescues loss of tcf12 in vivo. Our data extend the mutational landscape of IGD, highlight the genetic links between craniofacial patterning and GnRH dysfunction and begin to assemble the functional network that regulates the development of the GnRH axis.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Hormona Liberadora de Gonadotropina/genética , Síndrome de Kallmann/genética , Ubiquitina-Proteína Ligasas/genética , Proteínas de Pez Cebra/genética , Adulto , Anciano , Animales , Modelos Animales de Enfermedad , Femenino , Genes Dominantes/genética , Hormona Liberadora de Gonadotropina/deficiencia , Haploinsuficiencia/genética , Humanos , Síndrome de Kallmann/patología , Masculino , Persona de Mediana Edad , Mutación/genética , Neuronas/metabolismo , Neuronas/patología , Fenotipo , Pez Cebra/genética
5.
Genet Med ; 22(8): 1329-1337, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32341572

RESUMEN

PURPOSE: Impaired function of gonadotropin-releasing hormone (GnRH) neurons can cause a phenotypic spectrum ranging from delayed puberty to isolated hypogonadotropic hypogonadism (IHH). We sought to identify a new genetic etiology for these conditions. METHODS: Exome sequencing was performed in an extended family with autosomal dominant, markedly delayed puberty. The effects of the variant were studied in a GnRH neuronal cell line. Variants in the same gene were sought in a large cohort of individuals with IHH. RESULTS: We identified a rare missense variant (F900V) in DLG2 (which encodes PSD-93) that cosegregated with the delayed puberty. The variant decreased GnRH expression in vitro. PSD-93 is an anchoring protein of NMDA receptors, a type of glutamate receptor that has been implicated in the control of puberty in laboratory animals. The F900V variant impaired the interaction between PSD-93 and a known binding partner, Fyn, which phosphorylates NMDA receptors. Variants in DLG2 that also decreased GnRH expression were identified in three unrelated families with IHH. CONCLUSION: The findings indicate that variants in DLG2/PSD-93 cause autosomal dominant delayed puberty and may also contribute to IHH. The findings also suggest that the pathogenesis involves impaired NMDA receptor signaling and consequently decreased GnRH secretion.


Asunto(s)
Hormona Liberadora de Gonadotropina , Hipogonadismo , Hormona Liberadora de Gonadotropina/genética , Guanilato-Quinasas , Humanos , Hipogonadismo/genética , Proteínas , Transducción de Señal , Proteínas Supresoras de Tumor , Secuenciación del Exoma
6.
J Clin Endocrinol Metab ; 105(5)2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32034419

RESUMEN

CONTEXT: The reproductive axis is controlled by a network of gonadotropin-releasing hormone (GnRH) neurons born in the primitive nose that migrate to the hypothalamus alongside axons of the olfactory system. The observation that congenital anosmia (inability to smell) is often associated with GnRH deficiency in humans led to the prevailing view that GnRH neurons depend on olfactory structures to reach the brain, but this hypothesis has not been confirmed. OBJECTIVE: The objective of this work is to determine the potential for normal reproductive function in the setting of completely absent internal and external olfactory structures. METHODS: We conducted comprehensive phenotyping studies in 11 patients with congenital arhinia. These studies were augmented by review of medical records and study questionnaires in another 40 international patients. RESULTS: All male patients demonstrated clinical and/or biochemical signs of GnRH deficiency, and the 5 men studied in person had no luteinizing hormone (LH) pulses, suggesting absent GnRH activity. The 6 women studied in person also had apulsatile LH profiles, yet 3 had spontaneous breast development and 2 women (studied from afar) had normal breast development and menstrual cycles, suggesting a fully intact reproductive axis. Administration of pulsatile GnRH to 2 GnRH-deficient patients revealed normal pituitary responsiveness but gonadal failure in the male patient. CONCLUSIONS: Patients with arhinia teach us that the GnRH neuron, a key gatekeeper of the reproductive axis, is associated with but may not depend on olfactory structures for normal migration and function, and more broadly, illustrate the power of extreme human phenotypes in answering fundamental questions about human embryology.


Asunto(s)
Hormona Liberadora de Gonadotropina/metabolismo , Neuronas/fisiología , Nariz/anomalías , Trastornos del Olfato/congénito , Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Anomalías Múltiples/patología , Anomalías Múltiples/fisiopatología , Adolescente , Adulto , Anciano , Niño , Preescolar , Estudios de Cohortes , Femenino , Hormona Folículo Estimulante/sangre , Hormona Liberadora de Gonadotropina/deficiencia , Gónadas/anomalías , Gónadas/patología , Humanos , Hipogonadismo/genética , Hipogonadismo/metabolismo , Hipogonadismo/patología , Hipogonadismo/fisiopatología , Lactante , Hormona Luteinizante/sangre , Masculino , Persona de Mediana Edad , Neurogénesis/fisiología , Neuronas/metabolismo , Trastornos del Olfato/genética , Trastornos del Olfato/metabolismo , Trastornos del Olfato/fisiopatología , Vías Olfatorias/metabolismo , Vías Olfatorias/patología , Tamaño de los Órganos , Adulto Joven
7.
J Clin Endocrinol Metab ; 105(3)2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31628846

RESUMEN

CONTEXT: Kallmann syndrome (KS) is a rare, genetically heterogeneous Mendelian disorder. Structural defects in KS patients have helped define the genetic architecture of gonadotropin-releasing hormone (GnRH) neuronal development in this condition. OBJECTIVE: Examine the functional role a novel structural defect affecting a long noncoding RNA (lncRNA), RMST, found in a KS patient. DESIGN: Whole genome sequencing, induced pluripotent stem cells and derived neural crest cells (NCC) from the KS patient were contrasted with controls. SETTING: The Harvard Reproductive Sciences Center, Massachusetts General Hospital Center for Genomic Medicine, and Singapore Genome Institute. PATIENT: A KS patient with a unique translocation, t(7;12)(q22;q24). INTERVENTIONS/MAIN OUTCOME MEASURE/RESULTS: A novel translocation was detected affecting the lncRNA, RMST, on chromosome 12 in the absence of any other KS mutations. Compared with controls, the patient's induced pluripotent stem cells and NCC provided functional information regarding RMST. Whereas RMST expression increased during NCC differentiation in controls, it was substantially reduced in the KS patient's NCC coincident with abrogated NCC morphological development and abnormal expression of several "downstream" genes essential for GnRH ontogeny (SOX2, PAX3, CHD7, TUBB3, and MKRN3). Additionally, an intronic single nucleotide polymorphism in RMST was significantly implicated in a genome-wide association study associated with age of menarche. CONCLUSIONS: A novel deletion in RMST implicates the loss of function of a lncRNA as a unique cause of KS and suggests it plays a critical role in the ontogeny of GnRH neurons and puberty.


Asunto(s)
Hormona Liberadora de Gonadotropina/metabolismo , Síndrome de Kallmann/genética , Síndrome de Kallmann/patología , ARN Largo no Codificante/genética , Translocación Genética , Adulto , Cromosomas Humanos Par 12/genética , Cromosomas Humanos Par 7/genética , Estudio de Asociación del Genoma Completo , Hormona Liberadora de Gonadotropina/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Masculino , Cresta Neural/metabolismo , Cresta Neural/patología , Pronóstico
8.
J Clin Endocrinol Metab ; 104(8): 3403-3414, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31220265

RESUMEN

CONTEXT: After completion of puberty a subset of men experience functional hypogonadotropic hypogonadism (FHH) secondary to excessive exercise or weight loss. This phenomenon is akin to hypothalamic amenorrhea (HA) in women, yet little is known about FHH in men. OBJECTIVE: To investigate the neuroendocrine mechanisms, genetics, and natural history underlying FHH. DESIGN: Retrospective study in an academic medical center. PARTICIPANTS: Healthy postpubertal men presenting with symptoms of hypogonadism in the setting of excessive exercise (>10 hours/week) or weight loss (>10% of body weight). Healthy age-matched men served as controls. INTERVENTIONS: Clinical assessment, biochemical and neuroendocrine profiling, body composition, semen analysis, and genetic evaluation of genes known to cause isolated GnRH deficiency. MAIN OUTCOME MEASURES: Reproductive hormone levels, endogenous GnRH-induced LH pulse patterns, and rare genetic variants. RESULTS: Ten men with FHH were compared with 18 age-matched controls. Patients had significantly lower body mass index, testosterone, LH, and mean LH pulse amplitudes yet normal LH pulse frequency, serum FSH, and sperm counts. Some patients exhibited nocturnal, sleep-entrained LH pulses characteristic of early puberty, and one FHH subject showed a completely apulsatile LH secretion. After decreased exercise and weight gain, five men with men had normalized serum testosterone levels, and symptoms resolved. Rare missense variants in NSMF (n = 1) and CHD7 (n = 1) were identified in two men with FHH. CONCLUSIONS: FHH is a rare, reversible form of male GnRH deficiency. LH pulse patterns in male FHH are similar to those observed in women with HA. This study expands the spectrum of GnRH deficiency disorders in men.


Asunto(s)
Hormona Liberadora de Gonadotropina/deficiencia , Hipogonadismo/fisiopatología , Sistemas Neurosecretores/fisiopatología , Adolescente , Humanos , Hipogonadismo/genética , Hormona Luteinizante/sangre , Masculino , Mutación Missense , Estudios Retrospectivos , Factores de Transcripción/genética , Adulto Joven
9.
Hum Mol Genet ; 27(2): 338-350, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29161432

RESUMEN

A major challenge in human genetics is the validation of pathogenicity of heterozygous missense variants. This problem is well-illustrated by PROKR2 variants associated with Isolated GnRH Deficiency (IGD). Homozygous, loss of function variants in PROKR2 was initially implicated in autosomal recessive IGD; however, most IGD-associated PROKR2 variants are heterozygous. Moreover, while IGD patient cohorts are enriched for PROKR2 missense variants similar rare variants are also found in normal individuals. To elucidate the pathogenic mechanisms distinguishing IGD-associated PROKR2 variants from rare variants in controls, we assessed 59 variants using three approaches: (i) in silico prediction, (ii) traditional in vitro functional assays across three signaling pathways with mutant-alone transfections, and (iii) modified in vitro assays with mutant and wild-type expression constructs co-transfected to model in vivo heterozygosity. We found that neither in silico analyses nor traditional in vitro assessments of mutants transfected alone could distinguish IGD variants from control variants. However, in vitro co-transfections revealed that 15/34 IGD variants caused loss-of-function (LoF), including 3 novel dominant-negatives, while only 4/25 control variants caused LoF. Surprisingly, 19 IGD-associated variants were benign or exhibited LoF that could be rescued by WT co-transfection. Overall, variants that were LoF in ≥ 2 signaling assays under co-transfection conditions were more likely to be disease-associated than benign or 'rescuable' variants. Our findings suggest that in vitro modeling of WT/Mutant interactions increases the resolution for identifying causal variants, uncovers novel dominant negative mutations, and provides new insights into the pathogenic mechanisms underlying heterozygous PROKR2 variants.


Asunto(s)
Enanismo Hipofisario/genética , Mutación Missense , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo , Enanismo Hipofisario/metabolismo , Hormona Liberadora de Gonadotropina/deficiencia , Células HEK293 , Humanos , Hipogonadismo/genética , Linaje , Transducción de Señal
10.
EMBO Mol Med ; 9(10): 1379-1397, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28754744

RESUMEN

Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic form of isolated gonadotropin-releasing hormone (GnRH) deficiency caused by mutations in > 30 genes. Fibroblast growth factor receptor 1 (FGFR1) is the most frequently mutated gene in CHH and is implicated in GnRH neuron development and maintenance. We note that a CHH FGFR1 mutation (p.L342S) decreases signaling of the metabolic regulator FGF21 by impairing the association of FGFR1 with ß-Klotho (KLB), the obligate co-receptor for FGF21. We thus hypothesized that the metabolic FGF21/KLB/FGFR1 pathway is involved in CHH Genetic screening of 334 CHH patients identified seven heterozygous loss-of-function KLB mutations in 13 patients (4%). Most patients with KLB mutations (9/13) exhibited metabolic defects. In mice, lack of Klb led to delayed puberty, altered estrous cyclicity, and subfertility due to a hypothalamic defect associated with inability of GnRH neurons to release GnRH in response to FGF21. Peripheral FGF21 administration could indeed reach GnRH neurons through circumventricular organs in the hypothalamus. We conclude that FGF21/KLB/FGFR1 signaling plays an essential role in GnRH biology, potentially linking metabolism with reproduction.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Síndrome de Kallmann/genética , Proteínas de la Membrana/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Animales , Células COS , Caenorhabditis elegans/genética , Chlorocebus aethiops , Estudios de Cohortes , Femenino , Factores de Crecimiento de Fibroblastos/genética , Hormona Liberadora de Gonadotropina/genética , Células HEK293 , Humanos , Hipotálamo/metabolismo , Proteínas Klotho , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , Neuronas/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética
11.
Endocr Rev ; 2016(1): 4-22, 2016 02.
Artículo en Inglés | MEDLINE | ID: mdl-27454361

RESUMEN

The neuroendocrine regulation of reproduction is an intricate process requiring the exquisite coordination of an assortment of cellular networks, all converging on the GnRH neurons. These neurons have a complex life history, migrating mainly from the olfactory placode into the hypothalamus, where GnRH is secreted and acts as the master regulator of the hypothalamic-pituitary-gonadal axis. Much of what we know about the biology of the GnRH neurons has been aided by discoveries made using the human disease model of isolated GnRH deficiency (IGD), a family of rare Mendelian disorders that share a common failure of secretion and/or action of GnRH causing hypogonadotropic hypogonadism. Over the last 30 years, research groups around the world have been investigating the genetic basis of IGD using different strategies based on complex cases that harbor structural abnormalities or single pleiotropic genes, endogamous pedigrees, candidate gene approaches as well as pathway gene analyses. Although such traditional approaches, based on well-validated tools, have been critical to establish the field, new strategies, such as next-generation sequencing, are now providing speed and robustness, but also revealing a surprising number of variants in known IGD genes in both patients and healthy controls. Thus, before the field moves forward with new genetic tools and continues discovery efforts, we must reassess what we know about IGD genetics and prepare to hold our work to a different standard. The purpose of this review is to: 1) look back at the strategies used to discover the "known" genes implicated in the rare forms of IGD; 2) examine the strengths and weaknesses of the methodologies used to validate genetic variation; 3)substantiate the role of known genes in the pathophysiology of the disease; and 4) project forward as we embark upon a widening use of these new and powerful technologies for gene discovery. (Endocrine Reviews 36: 603-621, 2015).


Asunto(s)
Variación Genética , Genómica/métodos , Hipotálamo/fisiopatología , Reproducción , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Humanos , Hipogonadismo/fisiopatología , Hipotálamo/metabolismo , Masculino
12.
Endocr Rev ; 36(6): 603-21, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26394276

RESUMEN

The neuroendocrine regulation of reproduction is an intricate process requiring the exquisite coordination of an assortment of cellular networks, all converging on the GnRH neurons. These neurons have a complex life history, migrating mainly from the olfactory placode into the hypothalamus, where GnRH is secreted and acts as the master regulator of the hypothalamic-pituitary-gonadal axis. Much of what we know about the biology of the GnRH neurons has been aided by discoveries made using the human disease model of isolated GnRH deficiency (IGD), a family of rare Mendelian disorders that share a common failure of secretion and/or action of GnRH causing hypogonadotropic hypogonadism. Over the last 30 years, research groups around the world have been investigating the genetic basis of IGD using different strategies based on complex cases that harbor structural abnormalities or single pleiotropic genes, endogamous pedigrees, candidate gene approaches as well as pathway gene analyses. Although such traditional approaches, based on well-validated tools, have been critical to establish the field, new strategies, such as next-generation sequencing, are now providing speed and robustness, but also revealing a surprising number of variants in known IGD genes in both patients and healthy controls. Thus, before the field moves forward with new genetic tools and continues discovery efforts, we must reassess what we know about IGD genetics and prepare to hold our work to a different standard. The purpose of this review is to: 1) look back at the strategies used to discover the "known" genes implicated in the rare forms of IGD; 2) examine the strengths and weaknesses of the methodologies used to validate genetic variation; 3) substantiate the role of known genes in the pathophysiology of the disease; and 4) project forward as we embark upon a widening use of these new and powerful technologies for gene discovery.


Asunto(s)
Hormona Liberadora de Gonadotropina/deficiencia , Hormona Liberadora de Gonadotropina/genética , Hipotálamo/fisiología , Reproducción/genética , Cariotipo Anormal , Eliminación de Gen , Hormona Liberadora de Gonadotropina/fisiología , Humanos , Sistema Nervioso/crecimiento & desarrollo , Neuronas/fisiología , Sistemas Neurosecretores/fisiología , Linaje , Fenotipo , Síndrome
13.
J Clin Endocrinol Metab ; 100(10): E1378-85, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26207952

RESUMEN

CONTEXT: Loss of function (LoF) mutations in more than 20 genes are now known to cause isolated GnRH deficiency (IGD) in humans. Most causal IGD mutations are typically private, ie, limited to a single individual/pedigree. However, somewhat paradoxically, four IGD genes (GNRH1, TAC3, PROKR2, and GNRHR) have been shown to harbor LoF founder mutations that are shared by multiple unrelated individuals. It is not known whether similar founder mutations occur in other IGD genes. OBJECTIVE: The objective of the study was to determine whether shared deleterious mutations in IGD-associated genes represent founder alleles. SETTING: This study was an international collaboration among academic medical centers. METHODS: IGD patients with shared mutations, defined as those documented in three or more unrelated probands in 14 IGD-associated genes, were identified from various academic institutions, the Human Gene Mutation Database, and literature reports by other international investigators. Haplotypes of single-nucleotide polymorphisms and short tandem repeats surrounding the mutations were constructed to assess genetic ancestry. RESULTS: A total of eight founder mutations in five genes, GNRHR (Q106R, R262Q, R139H), TACR3 (W275X), PROKR2 (R85H), FGFR1 (R250Q, G687R), and HS6ST1 (R382W) were identified. Most founder alleles were present at low frequency in the general population. The estimated age of these mutant alleles ranged from 1925 to 5600 years and corresponded to the time of rapid human population expansion. CONCLUSIONS: We have expanded the spectrum of founder alleles associated with IGD to a total of eight founder mutations. In contrast to the approximately 9000-year-old PROKR2 founder allele that may confer a heterozygote advantage, the rest of the founder alleles are relatively more recent in origin, in keeping with the timing of recent human population expansion and any selective heterozygote advantage of these alleles requires further evaluation.


Asunto(s)
Hormona Liberadora de Gonadotropina/deficiencia , Hormona Liberadora de Gonadotropina/genética , Enfermedades Hipotalámicas/genética , Mutación , Neuroquinina B/genética , Receptores Acoplados a Proteínas G/genética , Receptores LHRH/genética , Receptores de Péptidos/genética , Alelos , Haplotipos , Humanos , Linaje
14.
Proc Natl Acad Sci U S A ; 111(50): 17953-8, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25472840

RESUMEN

Inactivating mutations in chromodomain helicase DNA binding protein 7 (CHD7) cause CHARGE syndrome, a severe multiorgan system disorder of which Isolated gonadotropin-releasing hormone (GnRH) deficiency (IGD) is a minor feature. Recent reports have described predominantly missense CHD7 alleles in IGD patients, but it is unclear if these alleles are relevant to causality or overall genetic burden of Kallmann syndrome (KS) and normosmic form of IGD. To address this question, we sequenced CHD7 in 783 well-phenotyped IGD patients lacking full CHARGE features; we identified nonsynonymous rare sequence variants in 5.2% of the IGD cohort (73% missense and 27% splice variants). Functional analyses in zebrafish using a surrogate otolith assay of a representative set of these CHD7 alleles showed that rare sequence variants observed in controls showed no altered function. In contrast, 75% of the IGD-associated alleles were deleterious and resulted in both KS and normosmic IGD. In two families, pathogenic mutations in CHD7 coexisted with mutations in other known IGD genes. Taken together, our data suggest that rare deleterious CHD7 alleles contribute to the mutational burden of patients with both KS and normosmic forms of IGD in the absence of full CHARGE syndrome. These findings (i) implicate a unique role or preferential sensitivity for CHD7 in the ontogeny of GnRH neurons, (ii) reiterate the emerging genetic complexity of this family of IGD disorders, and (iii) demonstrate how the coordinated use of well-phenotyped cohorts, families, and functional studies can inform genetic architecture and provide insights into the developmental biology of cellular systems.


Asunto(s)
ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Enfermedades Carenciales/genética , Hormona Liberadora de Gonadotropina/deficiencia , Síndrome de Kallmann/genética , Fenotipo , Pez Cebra/genética , Animales , Secuencia de Bases , Síndrome CHARGE/genética , Síndrome CHARGE/patología , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Técnicas de Silenciamiento del Gen , Hormona Liberadora de Gonadotropina/genética , Humanos , Datos de Secuencia Molecular , Mutación Missense/genética , Membrana Otolítica/patología , Estructura Terciaria de Proteína , Análisis de Secuencia de ADN
16.
J Clin Endocrinol Metab ; 99(3): E561-6, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24423319

RESUMEN

CONTEXT: Loss of prokineticin 2 (PROK2) signaling in mice disrupts circadian rhythms, but the role of PROK2 signaling in the regulation of circadian rhythms in humans is undetermined. OBJECTIVE: The aim of the study was to examine the circadian rhythms of humans with a complete loss-of-function PROK2 mutation using an inpatient constant routine (CR) protocol. DESIGN AND SETTING: We conducted a case study in an academic medical center. SUBJECTS AND METHODS: Two siblings (one male and one female, ages 67 and 62 y, respectively) with isolated GnRH deficiency (IGD) due to a biallelic loss-of-function PROK2 mutation were studied using an inpatient CR protocol. Historical data from inpatient CR protocols conducted in healthy controls (ages 65-81 y) were used for comparison. MAIN OUTCOME MEASURES: We measured circadian phase markers (melatonin, cortisol, and core body temperature) and neurobehavioral performance (psychomotor vigilance task [PVT] and subjective alertness scale). RESULTS: Circadian waveforms of melatonin and cortisol did not differ between the IGD participants with PROK2 mutation and controls. In both IGD participants, neurobehavioral testing with PVT showed disproportionate worsening of PVT lapses and median reaction time in the second half of the CR. CONCLUSIONS: Humans with loss of PROK2 signaling lack abnormalities in circadian phase markers, indicating intact central circadian pacemaker activity in these patients. These results suggest that PROK2 signaling in humans is not required for central circadian pacemaker function. However, impaired PVT in the PROK2-null participants despite preserved endocrine rhythms suggests that PROK2 may transmit circadian timing information to some neurobehavioral neural networks.


Asunto(s)
Trastornos Cronobiológicos/epidemiología , Trastornos Cronobiológicos/genética , Hormonas Gastrointestinales/genética , Hipogonadismo/epidemiología , Hipogonadismo/genética , Neuropéptidos/genética , Anciano , Anciano de 80 o más Años , Relojes Biológicos/genética , Estudios de Casos y Controles , Trastornos Cronobiológicos/complicaciones , Codón sin Sentido , Femenino , Hormona Liberadora de Gonadotropina/deficiencia , Hormona Liberadora de Gonadotropina/genética , Humanos , Hipogonadismo/complicaciones , Masculino , Persona de Mediana Edad , Hermanos , Sueño/genética
17.
J Clin Endocrinol Metab ; 98(11): E1790-5, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24037890

RESUMEN

CONTEXT AND OBJECTIVE: The optimal strategy for inducing fertility in men with congenital hypogonadotropic hypogonadism (CHH) is equivocal. Albeit a biologically plausible approach, pretreatment with recombinant FSH (rFSH) before GnRH/human chorionic gonadotropin administration has not been sufficiently assessed. The objective of the study was to test this method. DESIGN AND SETTING: This was a randomized, open-label treatment protocol at an academic medical center. PATIENTS AND INTERVENTIONS: GnRH-deficient men (CHH) with prepubertal testes (<4 mL), no cryptorchidism, and no prior gonadotropin therapy were randomly assigned to either 24 months of pulsatile GnRH therapy alone (inducing endogenous LH and FSH release) or 4 months of rFSH pretreatment followed by 24 months of GnRH therapy. Patients underwent serial testicular biopsies, ultrasound assessments of testicular volume, serum hormone measurements, and seminal fluid analyses. RESULTS: rFSH treatment increased inhibin B levels into the normal range (from 29 ± 9 to 107 ± 41 pg/mL, P < .05) and doubled testicular volume (from 1.1 ± 0.2 to 2.2 ± 0.3 mL, P < .005). Histological analysis showed proliferation of both Sertoli cells (SCs) and spermatogonia, a decreased SC to germ cell ratio (from 0.74 to 0.35), and SC cytoskeletal rearrangements. With pulsatile GnRH, the groups had similar hormonal responses and exhibited significant testicular growth. All men receiving rFSH pretreatment developed sperm in their ejaculate (7 of 7 vs 4 of 6 in the GnRH-only group) and showed trends toward higher maximal sperm counts. CONCLUSIONS: rFSH pretreatment followed by GnRH is successful in inducing testicular growth and fertility in men with CHH with prepubertal testes. rFSH not only appears to maximize the SC population but also induces morphologic changes, suggesting broader developmental roles.


Asunto(s)
Hormona Folículo Estimulante Humana/administración & dosificación , Hormona Liberadora de Gonadotropina/administración & dosificación , Hipogonadismo/complicaciones , Infertilidad Masculina/tratamiento farmacológico , Infertilidad Masculina/etiología , Adulto , Hormona Folículo Estimulante Humana/sangre , Hormona Liberadora de Gonadotropina/deficiencia , Humanos , Hipogonadismo/metabolismo , Infertilidad Masculina/metabolismo , Inhibinas/sangre , Masculino , Quimioterapia por Pulso , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/sangre , Recuento de Espermatozoides , Testículo/efectos de los fármacos , Testículo/crecimiento & desarrollo , Testículo/metabolismo
18.
J Clin Endocrinol Metab ; 98(5): E943-53, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23533228

RESUMEN

CONTEXT: The complexity of genetic testing in Kallmann syndrome (KS) is growing and costly. Thus, it is important to leverage the clinical evaluations of KS patients to prioritize genetic screening. OBJECTIVE: The objective of the study was to determine which reproductive and nonreproductive phenotypes of KS subjects have implications for specific gene mutations. SUBJECTS: Two hundred nineteen KS patients were studied: 151 with identified rare sequence variants (RSVs) in 8 genes known to cause KS (KAL1, NELF, CHD7, HS6ST1, FGF8/FGFR1, or PROK2/PROKR2) and 68 KS subjects who remain RSV negative for all 8 genes. MAIN OUTCOME MEASURES: Reproductive and nonreproductive phenotypes within each genetic group were measured. RESULTS: Male KS subjects with KAL1 RSVs displayed the most severe reproductive phenotype with testicular volumes (TVs) at presentation of 1.5 ± 0.1 mL vs 3.7 ± 0.3 mL, P < .05 vs all non-KAL1 probands. In both sexes, synkinesia was enriched but not unique to patients with KAL1 RSVs compared with KAL1-negative probands (43% vs 12%; P < .05). Similarly, dental agenesis and digital bone abnormalities were enriched in patients with RSVs in the FGF8/FGFR1 signaling pathway compared with all other gene groups combined (39% vs 4% and 23% vs 0%; P < .05, respectively). Hearing loss marked the probands with CHD7 RSVs (40% vs 13% in non-CHD7 probands; P < .05). Renal agenesis and cleft lip/palate did not emerge as statistically significant phenotypic predictors. CONCLUSIONS: Certain clinical features in men and women are highly associated with genetic causes of KS. Synkinesia (KAL1), dental agenesis (FGF8/FGFR1), digital bony abnormalities (FGF8/FGFR1), and hearing loss (CHD7) can be useful for prioritizing genetic screening.


Asunto(s)
ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Proteínas de la Matriz Extracelular/genética , Factor 8 de Crecimiento de Fibroblastos/genética , Síndrome de Kallmann/genética , Mutación , Proteínas del Tejido Nervioso/genética , Polimorfismo Genético , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Adulto , Anodoncia/etiología , Estudios de Cohortes , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Falanges de los Dedos de la Mano/anomalías , Estudios de Asociación Genética , Pruebas Genéticas/economía , Costos de la Atención en Salud , Pérdida Auditiva/etiología , Humanos , Síndrome de Kallmann/economía , Síndrome de Kallmann/metabolismo , Síndrome de Kallmann/fisiopatología , Masculino , Massachusetts , Proteínas del Tejido Nervioso/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Índice de Severidad de la Enfermedad , Transducción de Señal , Sincinesia/etiología
19.
Brain ; 136(Pt 2): 522-35, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23378218

RESUMEN

Missense mutations in TUBB3, the gene that encodes the neuronal-specific protein ß-tubulin isotype 3, can cause isolated or syndromic congenital fibrosis of the extraocular muscles, a form of complex congenital strabismus characterized by cranial nerve misguidance. One of the eight TUBB3 mutations reported to cause congenital fibrosis of the extraocular muscles, c.1228G>A results in a TUBB3 E410K amino acid substitution that directly alters a kinesin motor protein binding site. We report the detailed phenotypes of eight unrelated individuals who harbour this de novo mutation, and thus define the 'TUBB3 E410K syndrome'. Individuals harbouring this mutation were previously reported to have congenital fibrosis of the extraocular muscles, facial weakness, developmental delay and possible peripheral neuropathy. We now confirm by electrophysiology that a progressive sensorimotor polyneuropathy does indeed segregate with the mutation, and expand the TUBB3 E410K phenotype to include Kallmann syndrome (hypogonadotropic hypogonadism and anosmia), stereotyped midface hypoplasia, intellectual disabilities and, in some cases, vocal cord paralysis, tracheomalacia and cyclic vomiting. Neuroimaging reveals a thin corpus callosum and anterior commissure, and hypoplastic to absent olfactory sulci, olfactory bulbs and oculomotor and facial nerves, which support underlying abnormalities in axon guidance and maintenance. Thus, the E410K substitution defines a new genetic aetiology for Moebius syndrome, Kallmann syndrome and cyclic vomiting. Moreover, the c.1228G>A mutation was absent in DNA from ∼600 individuals who had either Kallmann syndrome or isolated or syndromic ocular and/or facial dysmotility disorders, but who did not have the combined features of the TUBB3 E410K syndrome, highlighting the specificity of this phenotype-genotype correlation. The definition of the TUBB3 E410K syndrome will allow clinicians to identify affected individuals and predict the mutation based on clinical features alone.


Asunto(s)
Sustitución de Aminoácidos/genética , Síndrome de Kallmann/genética , Síndrome de Mobius/genética , Neuronas/fisiología , Tubulina (Proteína)/genética , Vómitos/genética , Adolescente , Adulto , Niño , Femenino , Humanos , Síndrome de Kallmann/diagnóstico , Masculino , Síndrome de Mobius/diagnóstico , Mutación Missense/genética , Linaje , Vómitos/diagnóstico , Adulto Joven
20.
J Clin Endocrinol Metab ; 98(2): E206-16, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23341491

RESUMEN

CONTEXT: Isolated hypogonadotropic hypogonadism (IHH) is caused by defective GnRH secretion or action resulting in absent or incomplete pubertal development and infertility. Most women with IHH ovulate with physiological GnRH replacement, implicating GnRH deficiency as the etiology. However, a subset does not respond normally, suggesting the presence of defects at the pituitary or ovary. OBJECTIVES: The objective of the study was to unmask pituitary or ovarian defects in IHH women using a physiological regimen of GnRH replacement, relating these responses to genes known to cause IHH. DESIGN, SETTING, AND SUBJECTS: This study is a retrospective analysis of 37 IHH women treated with iv pulsatile GnRH (75 ng/kg per bolus). MAIN OUTCOME MEASURES: Serum gonadotropin and sex steroid levels were measured, and 14 genes implicated in IHH were sequenced. RESULTS: During their first cycle of GnRH replacement, normal cycles were recreated in 60% (22 of 37) of IHH women. Thirty percent of women (12 of 37) demonstrated an attenuated gonadotropin response, indicating pituitary resistance, and 10% (3 of 37) exhibited an exaggerated FSH response, consistent with ovarian resistance. Mutations in CHD7, FGFR1, KAL1, TAC3, and TACR3 were documented in IHH women with normal cycles, whereas mutations were identified in GNRHR, PROKR2, and FGFR1 in those with pituitary resistance. Women with ovarian resistance were mutation negative. CONCLUSIONS: Although physiological replacement with GnRH recreates normal menstrual cycle dynamics in most IHH women, hypogonadotropic responses in the first week of treatment identify a subset of women with pituitary dysfunction, only some of whom have mutations in GNRHR. IHH women with hypergonadotropic responses to GnRH replacement, consistent with an additional ovarian defect, did not have mutations in genes known to cause IHH, similar to our findings in a subset of IHH men with evidence of an additional testicular defect.


Asunto(s)
Hormona Liberadora de Gonadotropina/uso terapéutico , Terapia de Reemplazo de Hormonas/métodos , Hipogonadismo/tratamiento farmacológico , Hipófisis/fisiopatología , Adolescente , Adulto , Femenino , Genotipo , Hormona Liberadora de Gonadotropina/administración & dosificación , Humanos , Hipogonadismo/genética , Hipogonadismo/fisiopatología , Persona de Mediana Edad , Mutación , Estudios Retrospectivos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA