Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Eur J Histochem ; 68(2)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38699968

RESUMEN

Pleural mesothelioma is a devastating malignancy primarily associated with asbestos exposure. However, emerging evidence suggests that exposure to fluoro-edenite fibers, a naturally occurring mineral fiber, can also lead to the development of pleural mesothelioma. In this study, based on the hypothesis that pituitary adenylate cyclase-activating polypeptide (PACAP) and PACAP-preferring receptor (PAC1R) expressions could be dysregulated in pleural mesothelioma samples and that they could potentially act as diagnostic or prognostic biomarkers, we aimed to investigate the immunohistochemical expression of PACAP and PAC1R in pleural biopsies from patients with pleural mesothelioma exposed to fluoro-edenite fibers. A total of 12 patients were included in this study, and their biopsies were processed for immunohistochemical analysis to evaluate the expression of PACAP and its receptor. The study revealed a correlation between the overexpression of PACAP and PAC1R and shorter overall survival in patients with malignant mesothelioma. These findings suggest that PACAP and PAC1R expression levels could serve as potential prognostic biomarkers for malignant mesothelioma. Furthermore, the immunohistochemical analysis of PACAP and PAC1R may provide valuable information for clinicians to guide therapeutic decisions and identify patients with poorer prognosis.


Asunto(s)
Mesotelioma , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Neoplasias Pleurales , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria , Humanos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Masculino , Mesotelioma/metabolismo , Mesotelioma/patología , Mesotelioma/inducido químicamente , Persona de Mediana Edad , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Femenino , Neoplasias Pleurales/metabolismo , Neoplasias Pleurales/patología , Neoplasias Pleurales/inducido químicamente , Anciano , Asbestos Anfíboles/toxicidad , Mesotelioma Maligno/metabolismo , Mesotelioma Maligno/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/inducido químicamente , Inmunohistoquímica , Biomarcadores de Tumor/metabolismo
2.
Int J Mol Sci ; 25(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38791428

RESUMEN

Glioblastoma multiforme (GBM) represents the deadliest tumor among brain cancers. It is a solid tumor characterized by uncontrolled cell proliferation generating the hypoxic niches in the cancer core. By inducing the transcription of hypoxic inducible factor (HIF), hypoxia triggers many signaling cascades responsible for cancer progression and aggressiveness, including enhanced expression of vascular endothelial growth factor (VEGF) or antioxidant enzymes, such as heme oxygenase-1 (HO-1). The present work aimed to investigate the link between HO-1 expression and the hypoxic microenvironment of GBM by culturing two human glioblastoma cell lines (U87MG and A172) in the presence of a hypoxic mimetic agent, deferoxamine (DFX). By targeting hypoxia-induced HO-1, we have tested the effect of a novel acetamide-based HO-1 inhibitor (VP18/58) on GBM progression. Results have demonstrated that hypoxic conditions induced upregulation and nuclear expression of HO-1 in a cell-dependent manner related to malignant phenotype. Moreover, our data demonstrated that the HO-1 inhibitor counteracted GBM progression by modulating the HIFα/HO-1/VEGF signaling cascade in cancer cells bearing more malignant phenotypes.


Asunto(s)
Acetamidas , Glioblastoma , Hemo-Oxigenasa 1 , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular , Humanos , Glioblastoma/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Hemo-Oxigenasa 1/metabolismo , Línea Celular Tumoral , Acetamidas/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Transducción de Señal/efectos de los fármacos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Proliferación Celular/efectos de los fármacos , Progresión de la Enfermedad , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos
3.
Brain Sci ; 14(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38671983

RESUMEN

Glioblastoma multiforme (GBM) stands out as the most tremendous brain tumor, constituting 60% of primary brain cancers, accompanied by dismal survival rates. Despite advancements in research, therapeutic options remain limited to chemotherapy and surgery. GBM molecular heterogeneity, the intricate interaction with the tumor microenvironment (TME), and non-selective treatments contribute to the neoplastic relapse. Diagnostic challenges arise from GBM advanced-stage detection, necessitating the exploration of novel biomarkers for early diagnosis. Using data from the literature and a bioinformatic tool, the current manuscript delineates the molecular interplay between human GBM, astrocytes, and myeloid cells, underscoring selected protein pathways belonging to astroglia and myeloid lineage, which can be considered for targeted therapies. Moreover, the pivotal role of extracellular vesicles (EVs) in orchestrating a favorable microenvironment for cancer progression is highlighted, suggesting their utility in identifying biomarkers for GBM early diagnosis.

5.
Neuropeptides ; 102: 102386, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37856900

RESUMEN

Amyotrophic lateral Sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of motor neurons in the central nervous system. Mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1) account for approximately in 20% of familial ALS cases. The pathological mechanisms underlying the toxicity induced by mutated SOD1 are still unknown. However, it has been hypothesized that oxidative stress (OS) has a crucial role in motor neuron degeneration in ALS patients. Moreover, it has been described that SOD1 mutation interferes expression of nuclear factor erythroid 2-related factor 2 (Nrf2), a protective key modulator against OS and reactive oxygen species (ROS) formation. The protective effect of pituitary adenylate cyclase-activating peptide (PACAP) has been demonstrated in various neurological disorders, including ALS. Some of its effects are mediated by the stimulation of an intracellular factor known as activity-dependent protein (ADNP). The role of PACAP-ADNP axis on mutated SOD1 motor neuron degeneration has not been explored, yet. The present study aimed to investigate whether PACAP prevented apoptotic cell death induced by growth factor deprivation through ADNP activation and whether the peptidergic axis can counteract the OS insult. By using an in vitro model of ALS, we demonstrated that PACAP by binding to PAC1 receptor (PAC1R) prevented motor neuron death induced by serum deprivation through induction of the ADNP expression via PKC stimulation. Furthermore, we have also demonstrated that the PACAP/ADNP axis counteracted ROS formation by inducing translocation of the Nfr2 from the cytoplasm to the nucleus. In conclusion, our study provides new insights regarding the protective role of PACAP-ADNP in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Superóxido Dismutasa-1/farmacología , Especies Reactivas de Oxígeno/metabolismo , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Mutación , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/farmacología
6.
Peptides ; 170: 171107, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37775045

RESUMEN

Diabetic keratopathy (DK) is the major complication of the cornea characterizing diabetes-affected patients. This ocular pathology is correlated with the hyperglycemic state leading to delayed corneal wound healing and recurrent corneal ulcers. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with widespread distribution throughout the body, and exerting cytoprotective effects in the neural and non-neuronal parts of the eye, including the cornea. The purpose of the present study was to investigate whether changes in PACAP expression can concur for delayed epithelial wound healing in diabetic cornea and whether the protective effect of the peptide could be mediated through the activation of the EGFR signaling pathway, which has been reported to be impaired in DK. Expression and distribution of PACAP, PAC1R, and EGFR were investigated through immunohistochemistry analysis in the cornea of normal and diabetic rats. The role of the peptide on wound healing during DK was evaluated in an in vitro model represented by rabbit corneal epithelial cells grown in high glucose conditions. Western blotting and immunofluorescence analysis were used to examine the ability of PACAP to induce the activation of the EGFR/ERK1/2 signaling pathway. Our results showed that in diabetic cornea the expression of PACAP, PAC1R, and EGFR is drastically reduced. The treatment with PACAP via PAC1R activation enhanced cell viability and corneal epithelium wound healing in cells grown under high glucose conditions. Furthermore, both EGFR and ERK1/2 signaling was induced upon the peptide treatment. Overall, our results showed the trophic efficiency of PACAP for enhancing the corneal epithelium re-epithelialization suggesting that the peptide could be beneficially valuable as a treatment for DK.


Asunto(s)
Diabetes Mellitus Experimental , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Animales , Humanos , Conejos , Ratas , Diabetes Mellitus Experimental/tratamiento farmacológico , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glucosa/farmacología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Transducción de Señal
7.
Int J Mol Sci ; 24(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37762676

RESUMEN

A characteristic hallmark of Alzheimer's disease (AD) is the intracellular accumulation of hyperphosphorylated tau protein, a phenomenon that appears to have associations with oxidative stress, double-stranded DNA breakage, and the de-condensation of heterochromatin. Re-entry into the cell division cycle appears to be involved in the onset of this neurodegenerative process. Indeed, the cell cycle cannot proceed regularly in the differentiated neurons leading to cell death. Here, we induced cell cycle reactivation in neuronal-like cells, obtained by neuroblastoma cells treated with retinoic acid, by exposure to forskolin or aniline. These compounds determine tau hyperphosphorylation or oxidative stress, respectively, resulting in the appearance of features resembling the start of neuronal degeneration typical of AD, such as tau hyperphosphorylation and re-entry into the cell cycle. Indeed, we detected an increased transcriptional level of cyclins and the appearance of a high number of mitotic cells. We also observed a delay in the initiation of the cell cycle when forskolin was co-administered with pituitary adenylate cyclase-activating polypeptide (PACAP). This delay was not observed when PACAP was co-administered with aniline. Our data demonstrate the relevance of tau hyperphosphorylation in initiating an ectopic cell cycle in differentiated neuronal cells, a condition that can lead to neurodegeneration. Moreover, we highlight the utility of neuroblastoma cell lines as an in vitro cellular model to test the possible neuroprotective effects of natural molecules.

8.
Heliyon ; 9(7): e17470, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37455988

RESUMEN

Objective: Breast cancer patients and survivors are increasing in the last years such as their mean age. A feasible and useful complementary intervention to improve physical and psychological health, and decrease some disease symptoms seems to be physical activity. Consequently, this umbrella review wanted to analyze the protocols of different physical activity interventions and to eventually propose a standard operating procedure for possible exercise training in breast cancer patients.Design, Data sources, Eligibility criteria. The electronic databases PubMed, Scopus, and Web of Science were searched till 25 March 2022 to detect all systematic review and meta-analysis of randomized controlled trials on this topic. The studies were analyzed narratively and evaluated with a scale to assess their quality. Results: The studies presented heterogeneity in their population included in terms of disease stage and treatments, intervention protocols and outcomes evaluated. This made difficult to synthesize the findings. Conclusion: It was not possible to propose a standard operating procedure but some indications were proposed to provide feedback for future studies. Ideally, an intervention should be composed of combined training (aerobic and resistance training) with a component of a mindfulness intervention, with an intensity from moderate to high, and 3 times a week. The intervention should be supervised in the first period and then it could be home-based. Exercise training should be personalized to the patients treated.

9.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37445909

RESUMEN

Benign prostatic hypertrophy (BPH) is a noncancerous enlargement of the prostate gland that develops from hyper-proliferation of the stromal and epithelium region. Activation of pathways involving inflammation and oxidative stress can contribute to cell proliferation in BPH and tumorigenesis. Agricultural-waste-derived extracts have drawn the attention of researchers as they represent a valid and sustainable way to exploit waste production. Indeed, such extracts are rich in bioactive compounds and can provide health-promoting effects. In particular, extracts obtained from pomegranate wastes and by-products have been shown to exert antioxidant and anti-inflammatory effects. This study focused on the evaluation of the anti-angiogenic effects and chemopreventive action of a pomegranate extract (PWE) in cellular models of BPH. In our experimental conditions, we observed that PWE was able to significantly (p < 0.001) reduce the proliferation and migration rates (up to 60%), together with the clonogenic capacity of BPH-1 cells concomitantly with the reduction in inflammatory cytokines (e.g., IL-6, PGE2) and pro-angiogenic factor (VEGF-ADMA) release. Additionally, we demonstrated the ability of PWE in reducing angiogenesis in an in vitro model of BPH consisting in transferring BPH-1-cell-conditioned media to human endothelial H5V cells. Indeed, PWE was able to reduce tube formation in H5V cells through VEGF level reduction even at low concentrations. Overall, we confirmed that inhibition of angiogenesis may be an alternative therapeutic option to prevent neovascularization in prostate tissue with BPH and its transformation into malignant prostate cancer.


Asunto(s)
Granada (Fruta) , Hiperplasia Prostática , Masculino , Humanos , Hiperplasia Prostática/patología , Próstata/patología , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/farmacología , Células Epiteliales/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
10.
Peptides ; 168: 171065, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37495040

RESUMEN

During diabetic retinopathy (DR) progression, the retina undergoes various metabolic changes, including hypoxia-signalling cascade induction in the cells of retinal pigmented epithelium (RPE). The overexpression of hypoxic inducible factors causes transcription of many target genes including vascular endothelial growth factor (VEGF). The RPE cells form the outer blood retinal barrier (oBRB), a specialized structure that regulates ions and metabolites flux into the retina to maintain a suitable quality of its extracellular microenvironment. VEGF worsens retinal condition since its secretion from the basolateral compartment of RPE cells compromises the barrier's integrity and induces choroidal neovascularization. In this work, we hypothesized that PACAP prevents the damage to oBRB and controls choroidal neovascularization through the induction of ADNP. Firstly, we demonstrated that ADNP is expressed in Streptozotocin (STZ)-induced diabetic animals. To validate our hypothesis, we cultured endothelial cells (H5V) forming vessels-like structures, in a conditioned medium (CM) derived from ARPE-19 cells exposed to hyperglycaemic/hypoxic insult, containing a known VEGF concentration. The involvement of PACAP-ADNP axis on oBRB integrity was evaluated through the measurement of trans-epithelial-electrical resistance and permeability assay performed on ARPE cell monolayer cultured in CM and by analysing the expression of two tight junction forming proteins, ZO1 and occludin. By culturing H5V in CM, we demonstrated that PACAP-ADNP axis counteracted vessels-like structures formation promoted by VEGF. In conclusion, the results suggested a primary role of PACAP/ADNP axis in preventing oBRB damage and in controlling aberrant choroidal neovascularization induced by VEGF secreted from RPE cells exposed to hyperglycaemia/hypoxic insult in DR.


Asunto(s)
Neovascularización Coroidal , Retinopatía Diabética , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Células Endoteliales/metabolismo , Retina/metabolismo , Neovascularización Coroidal/genética , Neovascularización Coroidal/metabolismo , Retinopatía Diabética/metabolismo , Barrera Hematorretinal/metabolismo , Hipoxia/metabolismo
12.
Cells ; 12(7)2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-37048129

RESUMEN

Transcriptional regulation is fundamental to most biological processes and reverse-engineering programs can be used to decipher the underlying programs. In this review, we describe how genomics is offering a systems biology-based perspective of the intricate and temporally coordinated transcriptional programs that control neuronal apoptosis and survival. In addition to providing a new standpoint in human pathology focused on the regulatory program, cracking the code of neuronal cell fate may offer innovative therapeutic approaches focused on downstream targets and regulatory networks. Similar to computers, where faults often arise from a software bug, neuronal fate may critically depend on its transcription program. Thus, cracking the code of neuronal life or death may help finding a patch for neurodegeneration and cancer.


Asunto(s)
Regulación de la Expresión Génica , Neuronas , Humanos , Apoptosis/fisiología , Diferenciación Celular , Muerte Celular
13.
Int J Mol Sci ; 24(8)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37108060

RESUMEN

The corneal epithelium, representing the outermost layer of the cornea, acts as a barrier to protect the eye against external insults such as ultraviolet B (UV-B) radiations. The inflammatory response induced by these adverse events can alter the corneal structure, leading to visual impairment. In a previous study, we demonstrated the positive effects of NAP, the active fragment of activity-dependent protein (ADNP), against oxidative stress induced by UV-B radiations. Here, we investigated its role to counteract the inflammatory event triggered by this insult contributing to the disruption of the corneal epithelial barrier. The results indicated that NAP treatment prevents UV-B-induced inflammatory processes by affecting IL-1ß cytokine expression and NF-κB activation, as well as maintaining corneal epithelial barrier integrity. These findings may be useful for the future development of an NAP-based therapy for corneal disease.


Asunto(s)
Epitelio Corneal , Oligopéptidos/farmacología , Mediadores de Inflamación , Péptidos , Córnea
14.
Int J Oncol ; 62(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36484392

RESUMEN

Glioblastoma multiforme (GBM) is a brain cancer with a poor prognosis that affects adults. This is a solid tumor characterized by a high rate of cell migration and invasion. The uncontrolled cell proliferation creates hypoxic niches in the tumor mass, which leads to the overexpression of hypoxia­inducible factors (HIFs). This induces the activation of the vascular endothelial growth factor (VEGF), which is responsible for uncontrolled neoangiogenesis. Recent studies have demonstrated the anti­invasive effect of pituitary adenylate cyclase­activating peptide (PACAP) in GBM. PACAP effects on the central nervous system are also mediated through the activity­dependent neuroprotective protein (ADNP) activation. To date, no evidence exists regarding its role in GBM. Therefore, the ADNP involvement in GBM was investigated. By analyzing ADNP expression in a human GBM sample through confocal microscopy, a high ADNP immunoreactivity was detected in most glial cells and its predominant expression in hypoxic areas overexpressing HIF­1α was highlighted. To investigate the role of ADNP on the HIF­VEGF axis in GBM, a human U87MG GBM cell line was cultured with a hypoxic mimetic agent, deferoxamine, and cells were treated with the smallest active fragment of ADNP, known as NAP. The protein expression and distribution of HIF­1α and VEGF was detected using western blot analysis and immunofluorescence assay. Results demonstrated that ADNP modulates the hypoxic­angiogenic pathway in GBM cells by reducing VEGF secretion, detected through ELISA assay, as well as modulating their migration, assessed through wound healing assay. Although deeper investigation is necessary, the present study suggested that ADNP could be involved in PACAP anti­invasive effects in GBM.


Asunto(s)
Neoplasias , Factor A de Crecimiento Endotelial Vascular , Humanos , Hipoxia , Proteínas del Tejido Nervioso , Proteínas de Homeodominio
15.
Artículo en Inglés | MEDLINE | ID: mdl-36012025

RESUMEN

(1) Background: The number of breast-cancer patients and survivors is increasing in the last years. Physical activity seems to be a feasible and useful complementary intervention to improve the physical, psychological, and social spheres and decrease some symptoms, especially for survivors. Consequently, the objective of the present umbrella review was to analyze the efficacy of different physical-activity interventions in the physical, mental, and social spheres of breast-cancer survivors. (2) Methods: Systematic reviews and meta-analyses of randomized controlled trials on breast-cancer survivors and physical-activity effects were searched on the electronic databases PubMed, Web of Science, and Scopus till 9 August 2022. The quality of the studies included was evaluated, and the results were narratively analyzed. (3) Results: Physical-activity intervention generally improves the physical, mental, and social spheres of breast-cancer survivors, but the studies included present heterogeneity in the protocols adopted. (4) Conclusions: A well-structured and planned physical-activity intervention is useful for improvements in the physical, mental, and social spheres of breast-cancer survivors, but the studies presented high heterogeneity. Yoga seems to be the most effective physical intervention to complement medical therapy.


Asunto(s)
Neoplasias de la Mama , Supervivientes de Cáncer , Neoplasias de la Mama/psicología , Neoplasias de la Mama/terapia , Ejercicio Físico , Femenino , Humanos , Calidad de Vida , Sobrevivientes/psicología
17.
Antioxidants (Basel) ; 11(1)2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35052632

RESUMEN

The corneal epithelium, the outermost layer of the cornea, acts as a dynamic barrier preventing access to harmful agents into the intraocular space. It is subjected daily to different insults, and ultraviolet B (UV-B) irradiation represents one of the main causes of injury. In our previous study, we demonstrated the beneficial effects of pituitary adenylate cyclase-activating polypeptide (PACAP) against UV-B radiation damage in the human corneal endothelium. Some of its effects are mediated through the activation of the intracellular factor, known as the activity-dependent protein (ADNP). In the present paper, we have investigated the role of ADNP and the small peptide derived from ADNP, known as NAP, in the corneal epithelium. Here, we have demonstrated, for the first time, ADNP expression in human and rabbit corneal epithelium as well as its protective effect by treating the corneal epithelial cells exposed to UV-B radiations with NAP. Our results showed that NAP treatment prevents ROS formation by reducing UV-B-irradiation-induced apoptotic cell death and JNK signalling pathway activation. Further investigations are needed to deeply investigate the possible therapeutic use of NAP to counteract corneal UV-B damage.

18.
Cells ; 10(11)2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34831459

RESUMEN

Neuronal apoptosis and survival are regulated at the transcriptional level. To identify key genes and upstream regulators primarily responsible for these processes, we overlayed the temporal transcriptome of cerebellar granule neurons following induction of apoptosis and their rescue by three different neurotrophic factors. We identified a core set of 175 genes showing opposite expression trends at the intersection of apoptosis and survival. Their functional annotations and expression signatures significantly correlated to neurological, psychiatric and oncological disorders. Transcription regulatory network analysis revealed the action of nine upstream transcription factors, converging pro-apoptosis and pro-survival-inducing signals in a highly interconnected functionally and temporally ordered manner. Five of these transcription factors are potential drug targets. Transcriptome-based computational drug repurposing produced a list of drug candidates that may revert the apoptotic core set signature. Besides elucidating early drivers of neuronal apoptosis and survival, our systems biology-based perspective paves the way to innovative pharmacology focused on upstream targets and regulatory networks.


Asunto(s)
Apoptosis , Linaje de la Célula , Neuronas/citología , Transcripción Genética , Animales , Apoptosis/genética , Supervivencia Celular/genética , Análisis por Conglomerados , Reposicionamiento de Medicamentos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Trastornos Mentales/genética , Anotación de Secuencia Molecular , Enfermedades del Sistema Nervioso/genética , Neuronas/metabolismo , Mapas de Interacción de Proteínas/genética , Ratas Wistar , Factores de Tiempo , Factores de Transcripción/metabolismo
19.
Peptides ; 146: 170672, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34627957

RESUMEN

Lung adenocarcinoma is the most frequent form of non-small cell lung cancer. Inside the tumor mass, uncontrolled cell proliferation generates hypoxic areas leading to activation of hypoxia-inducible factors (HIFs) responsible for neovascularization and tumor metastasis. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are two neuropeptides widely distributed in respiratory organs. Previous studies have demonstrated that these peptides interfere with hypoxic pathways in various diseases, including tumors. However, their modulatory role in HIFs expression in lung adenocarcinomas has not yet been evaluated. In the present paper, we detected the expression profile of PACAP, VIP and related receptors in healthy and adenocarcinoma human lung tissue. To characterize peptides' modulatory effects on HIFs expression, we also exposed A549 lung adenocarcinoma cells and human normal bronchial epithelial BEAS-2B cells to microenvironmental hypoxia by treating them with deferoxamine (DFX). The results showed that PACAP and VIP significantly reduced HIF-1α and HIF-2α levels in both cell lines following hypoxic stress. The HIF-3α expression profile was related to cellular phenotype as it was lower in BEAS-2B and higher in A549 cells under low oxygen tension. In lung adenocarcinoma cells, peptide treatment restored HIF-3 α expression to control levels. These results suggest that endogenous PACAP and VIP exert controversial roles in cellular hypoxic microenvironments depending on the pathophysiological conditions of the lung tissue.


Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias Pulmonares/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Péptido Intestinal Vasoactivo/metabolismo , Células A549 , Adenocarcinoma del Pulmón/patología , Línea Celular , Humanos , Neoplasias Pulmonares/patología , Microambiente Tumoral
20.
J Med Chem ; 64(18): 13373-13393, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34472337

RESUMEN

Heme oxygenase-1 (HO-1) promotes heme catabolism exercising cytoprotective roles in normal and cancer cells. Herein, we report the design, synthesis, molecular modeling, and biological evaluation of novel HO-1 inhibitors. Specifically, an amide linker in the central spacer and an imidazole were fixed, and the hydrophobic moiety required by the pharmacophore was largely modified. In many tumors, overexpression of HO-1 correlates with poor prognosis and chemoresistance, suggesting the inhibition of HO-1 as a possible antitumor strategy. Accordingly, compounds 7i and 7l-p emerged for their potency against HO-1 and were investigated for their anticancer activity against prostate (DU145), lung (A549), and glioblastoma (U87MG, A172) cancer cells. The selected compounds showed the best activity toward U87MG cells. Compound 7l was further investigated for its in-cell enzymatic HO-1 activity, expression levels, and effects on cell invasion and vascular endothelial growth factor (VEGF) extracellular release. The obtained data suggest that 7l can reduce cell invasivity acting through modulation of HO-1 expression.


Asunto(s)
Acetamidas/farmacología , Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Hemo Oxigenasa (Desciclizante)/antagonistas & inhibidores , Hemo-Oxigenasa 1/antagonistas & inhibidores , Acetamidas/síntesis química , Acetamidas/metabolismo , Animales , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Línea Celular Tumoral , Proliferación Celular , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo-Oxigenasa 1/metabolismo , Humanos , Masculino , Simulación del Acoplamiento Molecular , Estructura Molecular , Unión Proteica , Ratas Sprague-Dawley , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA