Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Microbiol Spectr ; 10(6): e0244822, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36354320

RESUMEN

Remdesivir (RDV) was the first antiviral drug approved by the FDA to treat severe coronavirus disease-2019 (COVID-19) patients. RDV inhibits SARS-CoV-2 replication by stalling the non structural protein 12 (nsp12) subunit of the RNA-dependent RNA polymerase (RdRp). No evidence of global widespread RDV-resistance mutations has been reported, however, defining genetic pathways to RDV resistance and determining emergent mutations prior and subsequent antiviral therapy in clinical settings is necessary. This study identified 57/149 (38.3%) patients who did not respond to one course (5-days) (n = 36/111, 32.4%) or prolonged (5 to 20 days) (n = 21/38, 55.3%) RDV therapy by subgenomic RNA detection. Genetic variants in the nsp12 gene were detected in 29/49 (59.2%) non responder patients by Illumina sequencing, including the de novo E83D mutation that emerged in an immunosuppressed patient after receiving 10 + 8 days of RDV, and the L838I detected at baseline and/or after prolonged RDV treatment in 9/49 (18.4%) non responder subjects. Although 3D protein modeling predicted no interference with RDV, the amino acid substitutions detected in the nsp12 involved changes on the electrostatic outer surface and in secondary structures that may alter antiviral response. It is important for health surveillance to study potential mutations associated with drug resistance as well as the benefit of RDV retreatment, especially in immunosuppressed patients and in those with persistent replication. IMPORTANCE This study provides clinical and microbiologic data of an extended population of hospitalized patients for COVID-19 pneumonia who experienced treatment failure, detected by the presence of subgenomic RNA (sgRNA). The genetic variants found in the nsp12 pharmacological target of RDV bring into focus the importance of monitoring emergent mutations, one of the objectives of the World Health Organization (WHO) for health surveillance. These mutations become even more crucial as RDV keeps being prescribed and new molecules are being repurposed for the treatment of COVID-19. The present article offers new perspectives for the clinical management of non responder patients treated and retreated with RDV and emphasizes the need of further research of the benefit of combinatorial therapies and RDV retreatment, especially in immunosuppressed patients with persistent replication after therapy.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Tratamiento Farmacológico de COVID-19 , Adenosina Monofosfato/uso terapéutico , Adenosina Monofosfato/metabolismo , Antivirales/uso terapéutico , Antivirales/química
2.
PLoS One ; 8(8): e72678, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23940816

RESUMEN

The cyst-forming protozoan parasite Neosporacaninum is one of the main causes of bovine abortion worldwide and is of great economic importance in the cattle industry. Recent studies have revealed extensive genetic variation among N. caninum isolates based on microsatellite sequences (MSs). MSs may be suitable molecular markers for inferring the diversity of parasite populations, molecular epidemiology and the basis for phenotypic variations in N. caninum, which have been poorly defined. In this study, we evaluated nine MS markers using a panel of 11 N. caninum-derived reference isolates from around the world and 96 N. caninum bovine clinical samples and one ovine clinical sample collected from four countries on two continents, including Spain, Argentina, Germany and Scotland, over a 10-year period. These markers were used as molecular tools to investigate the genetic diversity, geographic distribution and population structure of N. caninum. Multilocus microsatellite genotyping based on 7 loci demonstrated high levels of genetic diversity in the samples from all of the different countries, with 96 microsatellite multilocus genotypes (MLGs) identified from 108 N. caninum samples. Geographic sub-structuring was present in the country populations according to pairwise F(ST). Principal component analysis (PCA) and Neighbor Joining tree topologies also suggested MLG segregation partially associated with geographical origin. An analysis of the MLG relationships, using eBURST, confirmed that the close genetic relationship observed between the Spanish and Argentinean populations may be the result of parasite migration (i.e., the introduction of novel MLGs from Spain to South America) due to cattle movement. The eBURST relationships also revealed genetically different clusters associated with the abortion. The presence of linkage disequilibrium, the co-existence of specific MLGs to individual farms and eBURST MLG relationships suggest a predominant clonal propagation for Spanish N. caninum MLGs in cattle.


Asunto(s)
Bovinos/parasitología , Coccidiosis/parasitología , Variación Genética , Repeticiones de Microsatélite/genética , Neospora/genética , Animales , Argentina/epidemiología , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/parasitología , Coccidiosis/epidemiología , ADN Protozoario/análisis , Técnicas de Genotipaje , Geografía , Alemania/epidemiología , Neospora/aislamiento & purificación , Escocia/epidemiología , Ovinos/parasitología , Enfermedades de las Ovejas/epidemiología , Enfermedades de las Ovejas/parasitología , España/epidemiología
3.
Vaccine ; 29(40): 6928-40, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21807060

RESUMEN

Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) is highly heterogenic. This heterogeneity has an effect on antigenic composition of PRRSV and might create differences in sensitivity to neutralization between isolates. The sensitivity to neutralization could be an important feature of PRRSV isolates because it is likely that isolates resistant to neutralization pose a significant challenge for the development of vaccines that elicit broad protective immunity. Nonetheless, little information is available for understanding or categorizing the viral neutralization phenotype of PRRSV isolates. Consequently, the main purpose of this study was to determine whether PRRSV isolates differ in their susceptibility to neutralization and if they can be classified in different categories based on their neutralization phenotype. For this purpose, a panel of 39 PRRSV isolates and a set of 30 hyperimmune monospecific sera were used in cross-neutralization assays. The results of this study indicate that PRRSV isolates differ in their sensitivity to neutralization and k-means clustering system allowed classifying the isolates in four different categories according to their neutralization phenotype: highly sensitive, sensitive, moderately sensitive and resistant to neutralization. Further analyses using two additional clustering systems that considered individual data for the classification of the isolates confirmed that classification obtained by k-means is accurate in most cases and that only in a few instances classification is less stringent. Sequences of GP3, GP4 and GP5 were analyzed but no correlation could be found between the sequence of previously identified neutralizing epitopes or the number of N-linked glycosylation sites in different proteins and the neutralization phenotype of the isolates. These data provide the first systematic assessment of overall neutralization sensitivities of a panel of diverse PRRSV isolates. The classification of the isolates provides a useful tool to facilitate the systematic characterization of neutralizing antibody production elicited by new vaccine candidates.


Asunto(s)
Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Antivirales/inmunología , Línea Celular , Epítopos/genética , Epítopos/inmunología , Genotipo , Sueros Inmunes/inmunología , Datos de Secuencia Molecular , Pruebas de Neutralización/métodos , Fenotipo , Virus del Síndrome Respiratorio y Reproductivo Porcino/clasificación , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/aislamiento & purificación , Sensibilidad y Especificidad , Alineación de Secuencia , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de Proteína/métodos , Porcinos
4.
Vet J ; 189(3): 323-9, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20713312

RESUMEN

Disease exacerbation was observed in pigs challenged with virulent porcine reproductive and respiratory syndrome virus (PRRSV) following immunisation with a recombinant GP5 sub-unit PRRSV vaccine (rGP5) produced in E. coli. Eighteen animals were divided into three experimental groups: group A were immunised twice IM with rGP5, 21 days apart; group B acted as positive controls (challenged but not immunised); and group C were negative controls. Pigs in groups A and B were challenged 21 days after the second immunisation of the group A animals. Following challenge, three pigs given rGP5 exhibited more severe clinical signs than the positive controls, including respiratory distress and progressive weight-loss. Although not statistically significant, the more severe disease exhibited by group A animals may suggest previous immunisation as a contributory factor. The mechanisms of these findings remain unclear and no association could be established between the severity of disease, non-neutralising antibody concentrations and tissue viral loads.


Asunto(s)
Productos del Gen env/genética , Productos del Gen env/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Enfermedades de los Porcinos/prevención & control , Animales , Anticuerpos Neutralizantes/sangre , Secuencia de Bases , Escherichia coli/inmunología , Datos de Secuencia Molecular , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/fisiopatología , Virus del Síndrome Respiratorio y Reproductivo Porcino/patogenicidad , Análisis de Secuencia de Proteína , Sus scrofa , Porcinos , Enfermedades de los Porcinos/fisiopatología , Enfermedades de los Porcinos/virología , Vacunación/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA