Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(21): e2318591121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739802

RESUMEN

The transcription factor p73, a member of the p53 tumor-suppressor family, regulates cell death and also supports tumorigenesis, although the mechanistic basis for the dichotomous functions is poorly understood. We report here the identification of an alternate transactivation domain (TAD) located at the extreme carboxyl (C) terminus of TAp73ß, a commonly expressed p73 isoform. Mutational disruption of this TAD significantly reduced TAp73ß's transactivation activity, to a level observed when the amino (N)-TAD that is similar to p53's TAD, is mutated. Mutation of both TADs almost completely abolished TAp73ß's transactivation activity. Expression profiling highlighted a unique set of targets involved in extracellular matrix-receptor interaction and focal adhesion regulated by the C-TAD, resulting in FAK phosphorylation, distinct from the N-TAD targets that are common to p53 and are involved in growth inhibition. Interestingly, the C-TAD targets are also regulated by the oncogenic, amino-terminal-deficient DNp73ß isoform. Consistently, mutation of C-TAD reduces cellular migration and proliferation. Mechanistically, selective binding of TAp73ß to DNAJA1 is required for the transactivation of C-TAD target genes, and silencing DNAJA1 expression abrogated all C-TAD-mediated effects. Taken together, our results provide a mechanistic basis for the dichotomous functions of TAp73 in the regulation of cellular growth through its distinct TADs.


Asunto(s)
Proliferación Celular , Dominios Proteicos , Activación Transcripcional , Proteína Tumoral p73 , Proteína Tumoral p73/metabolismo , Proteína Tumoral p73/genética , Humanos , Movimiento Celular/genética , Mutación , Línea Celular Tumoral , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Fosforilación , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética
2.
Cell Rep ; 42(12): 113484, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-37999976

RESUMEN

The nucleolar scaffold protein NPM1 is a multifunctional regulator of cellular homeostasis, genome integrity, and stress response. NPM1 mutations, known as NPM1c variants promoting its aberrant cytoplasmic localization, are the most frequent genetic alterations in acute myeloid leukemia (AML). A hallmark of AML cells is their dependency on elevated autophagic flux. Here, we show that NPM1 and NPM1c induce the autophagy-lysosome pathway by activating the master transcription factor TFEB, thereby coordinating the expression of lysosomal proteins and autophagy regulators. Importantly, both NPM1 and NPM1c bind to autophagy modifiers of the GABARAP subfamily through an atypical binding module preserved within its N terminus. The propensity of NPM1c to induce autophagy depends on this module, likely indicating that NPM1c exerts its pro-autophagic activity by direct engagement with GABARAPL1. Our data report a non-canonical binding mode of GABARAP family members that drives the pro-autophagic potential of NPM1c, potentially enabling therapeutic options.


Asunto(s)
Leucemia Mieloide Aguda , Proteínas Nucleares , Humanos , Proteínas Nucleares/metabolismo , Leucemia Mieloide Aguda/metabolismo , Autofagia/fisiología , Mutación/genética , Lisosomas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo
3.
Cell Death Dis ; 14(10): 674, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828008

RESUMEN

The two p53 homologues p63 and p73 regulate transcriptional programs in epithelial tissues and several cell types in these tissues express both proteins. All members of the p53 family form tetramers in their active state through a dedicated oligomerization domain that structurally assembles as a dimer of dimers. The oligomerization domain of p63 and p73 share a high sequence identity, but the p53 oligomerization domain is more divergent and it lacks a functionally important C-terminal helix present in the other two family members. Based on these structural differences, p53 does not hetero-oligomerize with p63 or p73. In contrast, p63 and p73 form hetero-oligomers of all possible stoichiometries, with the hetero-tetramer built from a p63 dimer and a p73 dimer being thermodynamically more stable than the two homo-tetramers. This predicts that in cells expressing both proteins a p632/p732 hetero-tetramer is formed. So far, the tools to investigate the biological function of this hetero-tetramer have been missing. Here we report the generation and characterization of Designed Ankyrin Repeat Proteins (DARPins) that bind with high affinity and selectivity to the p632/p732 hetero-tetramer. Using these DARPins we were able to confirm experimentally the existence of this hetero-tetramer in epithelial mouse and human tissues and show that its level increases in squamous cell carcinoma.


Asunto(s)
Carcinoma de Células Escamosas , Factores de Transcripción , Animales , Humanos , Ratones , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Proteínas de Repetición de Anquirina Diseñadas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína Tumoral p73/genética , Proteína Tumoral p73/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/metabolismo
4.
J Gen Virol ; 104(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37750869

RESUMEN

Hepatitis C virus (HCV) infects millions of people worldwide and is a leading cause of liver disease. Despite recent advances in antiviral therapies, viral resistance can limit drug efficacy and understanding the mechanisms that confer viral escape is important. We employ an unbiased interactome analysis to discover host binding partners of the HCV non-structural protein 5A (NS5A), a key player in viral replication and assembly. We identify ASPP2, apoptosis-stimulating protein of p53, as a new host co-factor that binds NS5A via its SH3 domain. Importantly, silencing ASPP2 reduces viral replication and spread. Our study uncovers a previously unknown role for ASPP2 to potentiate HCV RNA replication.


Asunto(s)
Hepacivirus , Hepatitis C , Humanos , Hepacivirus/genética , Dominios Homologos src , Replicación Viral , Proteínas no Estructurales Virales/metabolismo , Dominios Proteicos
6.
Nucleic Acids Res ; 51(12): 6307-6320, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37224528

RESUMEN

DNA mismatch repair (MMR) is essential for correction of DNA replication errors. Germline mutations of the human MMR gene MLH1 are the major cause of Lynch syndrome, a heritable cancer predisposition. In the MLH1 protein, a non-conserved, intrinsically disordered region connects two conserved, catalytically active structured domains of MLH1. This region has as yet been regarded as a flexible spacer, and missense alterations in this region have been considered non-pathogenic. However, we have identified and investigated a small motif (ConMot) in this linker which is conserved in eukaryotes. Deletion of the ConMot or scrambling of the motif abolished mismatch repair activity. A mutation from a cancer family within the motif (p.Arg385Pro) also inactivated MMR, suggesting that ConMot alterations can be causative for Lynch syndrome. Intriguingly, the mismatch repair defect of the ConMot variants could be restored by addition of a ConMot peptide containing the deleted sequence. This is the first instance of a DNA mismatch repair defect conferred by a mutation that can be overcome by addition of a small molecule. Based on the experimental data and AlphaFold2 predictions, we suggest that the ConMot may bind close to the C-terminal MLH1-PMS2 endonuclease and modulate its activation during the MMR process.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis , Reparación de la Incompatibilidad de ADN , Homólogo 1 de la Proteína MutL , Humanos , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/patología , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Mutación , Homólogo 1 de la Proteína MutL/genética , Homólogo 1 de la Proteína MutL/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
7.
Nature ; 618(7964): 394-401, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225996

RESUMEN

The endoplasmic reticulum (ER) undergoes continuous remodelling via a selective autophagy pathway, known as ER-phagy1. ER-phagy receptors have a central role in this process2, but the regulatory mechanism remains largely unknown. Here we report that ubiquitination of the ER-phagy receptor FAM134B within its reticulon homology domain (RHD) promotes receptor clustering and binding to lipidated LC3B, thereby stimulating ER-phagy. Molecular dynamics (MD) simulations showed how ubiquitination perturbs the RHD structure in model bilayers and enhances membrane curvature induction. Ubiquitin molecules on RHDs mediate interactions between neighbouring RHDs to form dense receptor clusters that facilitate the large-scale remodelling of lipid bilayers. Membrane remodelling was reconstituted in vitro with liposomes and ubiquitinated FAM134B. Using super-resolution microscopy, we discovered FAM134B nanoclusters and microclusters in cells. Quantitative image analysis revealed a ubiquitin-mediated increase in FAM134B oligomerization and cluster size. We found that the E3 ligase AMFR, within multimeric ER-phagy receptor clusters, catalyses FAM134B ubiquitination and regulates the dynamic flux of ER-phagy. Our results show that ubiquitination enhances RHD functions via receptor clustering, facilitates ER-phagy and controls ER remodelling in response to cellular demands.


Asunto(s)
Autofagia , Estrés del Retículo Endoplásmico , Retículo Endoplásmico , Ubiquitinación , Autofagia/fisiología , Retículo Endoplásmico/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ubiquitinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Receptores del Factor Autocrino de Motilidad/metabolismo
8.
Cell Death Dis ; 14(4): 274, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072394

RESUMEN

The transcription factor p63 shares a high sequence identity with the tumour suppressor p53 which manifests itself in high structural similarity and preference for DNA sequences. Mutations in the DNA binding domain (DBD) of p53 have been studied in great detail, enabling a general mechanism-based classification. In this study we provide a detailed investigation of all currently known mutations in the p63 DBD, which are associated with developmental syndromes, by measuring their impact on transcriptional activity, DNA binding affinity, zinc binding capacity and thermodynamic stability. Some of the mutations we have further characterized with respect to their ability to convert human dermal fibroblasts into induced keratinocytes. Here we propose a classification of the p63 DBD mutations based on the four different mechanisms of DNA binding impairment which we identified: direct DNA contact, zinc finger region, H2 region, and dimer interface mutations. The data also demonstrate that, in contrast to p53 cancer mutations, no p63 mutation induces global unfolding and subsequent aggregation of the domain. The dimer interface mutations that affect the DNA binding affinity by disturbing the interaction between the individual DBDs retain partial DNA binding capacity which correlates with a milder patient phenotype.


Asunto(s)
Proteína p53 Supresora de Tumor , Proteínas Supresoras de Tumor , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Unión Proteica/genética , Mutación/genética , ADN/metabolismo , Sitios de Unión
9.
Cell Rep ; 41(3): 111503, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36261000

RESUMEN

Concurrent mutation of a RAS oncogene and the tumor suppressor p53 is common in tumorigenesis, and inflammation can promote RAS-driven tumorigenesis without the need to mutate p53. Here, we show, using a well-established mutant RAS and an inflammation-driven mouse skin tumor model, that loss of the p53 inhibitor iASPP facilitates tumorigenesis. Specifically, iASPP regulates expression of a subset of p63 and AP1 targets, including genes involved in skin differentiation and inflammation, suggesting that loss of iASPP in keratinocytes supports a tumor-promoting inflammatory microenvironment. Mechanistically, JNK-mediated phosphorylation regulates iASPP function and inhibits iASPP binding with AP1 components, such as JUND, via PXXP/SH3 domain-mediated interaction. Our results uncover a JNK-iASPP-AP1 regulatory axis that is crucial for tissue homeostasis. We show that iASPP is a tumor suppressor and an AP1 coregulator.


Asunto(s)
Proteínas Represoras , Proteína p53 Supresora de Tumor , Animales , Ratones , Transformación Celular Neoplásica/genética , Inflamación/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Represoras/metabolismo , Microambiente Tumoral , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , MAP Quinasa Quinasa 4/metabolismo , Factor de Transcripción AP-1/metabolismo
10.
Front Bioeng Biotechnol ; 10: 906295, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935506

RESUMEN

Nanodiscs are emerging to serve as transfer vectors for the insertion of recombinant membrane proteins into membranes of living cells. In combination with cell-free expression technologies, this novel process opens new perspectives to analyze the effects of even problematic targets such as toxic, hard-to-express, or artificially modified membrane proteins in complex cellular environments of different cell lines. Furthermore, transferred cells must not be genetically engineered and primary cell lines or cancer cells could be implemented as well. We have systematically analyzed the basic parameters of the nanotransfer approach and compared the transfer efficiencies from nanodiscs with that from Salipro particles. The transfer of five membrane proteins was analyzed: the prokaryotic proton pump proteorhodopsin, the human class A family G-protein coupled receptors for endothelin type B, prostacyclin, free fatty acids type 2, and the orphan GPRC5B receptor as a class C family member. The membrane proteins were cell-free synthesized with a detergent-free strategy by their cotranslational insertion into preformed nanoparticles containing defined lipid environments. The purified membrane protein/nanoparticles were then incubated with mammalian cells. We demonstrate that nanodiscs disassemble and only lipids and membrane proteins, not the scaffold protein, are transferred into cell membranes. The process is detectable within minutes, independent of the nanoparticle lipid composition, and the transfer efficiency directly correlates with the membrane protein concentration in the transfer mixture and with the incubation time. Transferred membrane proteins insert in both orientations, N-terminus in and N-terminus out, in the cell membrane, and the ratio can be modulated by engineering. The viability of cells is not notably affected by the transfer procedure, and transferred membrane proteins stay detectable in the cell membrane for up to 3 days. Transferred G-protein coupled receptors retained their functionality in the cell environment as shown by ligand binding, induction of internalization, and specific protein interactions. In comparison to transfection, the cellular membrane protein concentration is better controllable and more uniformly distributed within the analyzed cell population. A further notable difference to transfection is the accumulation of transferred membrane proteins in clusters, presumably determined by microdomain structures in the cell membranes.

11.
Hum Mutat ; 43(10): 1443-1453, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35801529

RESUMEN

Premature ovarian insufficiency (POI) is a leading form of female infertility, characterised by menstrual disturbance and elevated follicle-stimulating hormone before age 40. It is highly heterogeneous with variants in over 80 genes potentially causative, but the majority of cases having no known cause. One gene implicated in POI pathology is TP63. TP63 encodes multiple p63 isoforms, one of which has been shown to have a role in the surveillance of genetic quality in oocytes. TP63 C-terminal truncation variants and N-terminal duplication have been described in association with POI, however, functional validation has been lacking. Here we identify three novel TP63 missense variants in women with nonsyndromic POI, including one in the N-terminal activation domain, one in the C-terminal inhibition domain, and one affecting a unique and poorly understood p63 isoform, TA*p63. Via blue-native page and luciferase reporter assays we demonstrate that two of these variants disrupt p63 dimerization, leading to constitutively active p63 tetramer that significantly increases the transcription of downstream targets. This is the first evidence that TP63 missense variants can cause isolated POI and provides mechanistic insight that TP63 variants cause POI due to constitutive p63 activation and accelerated oocyte loss in the absence of DNA damage.


Asunto(s)
Insuficiencia Ovárica Primaria , Factores de Transcripción , Proteínas Supresoras de Tumor , Femenino , Humanos , Mutación Missense , Insuficiencia Ovárica Primaria/genética , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética
12.
Cell Death Differ ; 29(12): 2445-2458, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35717504

RESUMEN

The function of the p53 transcription factor family is dependent on several folded domains. In addition to a DNA-binding domain, members of this family contain an oligomerization domain. p63 and p73 also contain a C-terminal Sterile α-motif domain. Inhibition of most transcription factors is difficult as most of them lack deep pockets that can be targeted by small organic molecules. Genetic knock-out procedures are powerful in identifying the overall function of a protein, but they do not easily allow one to investigate roles of individual domains. Here we describe the characterization of Designed Ankyrin Repeat Proteins (DARPins) that were selected as tight binders against all folded domains of p63. We determine binding affinities as well as specificities within the p53 protein family and show that DARPins can be used as intracellular inhibitors for the modulation of transcriptional activity. By selectively inhibiting DNA binding of the ΔNp63α isoform that competes with p53 for the same promoter sites, we show that p53 can be reactivated. We further show that inhibiting the DNA binding activity stabilizes p63, thus providing evidence for a transcriptionally regulated negative feedback loop. Furthermore, the ability of DARPins to bind to the DNA-binding domain and the Sterile α-motif domain within the dimeric-only and DNA-binding incompetent conformation of TAp63α suggests a high structural plasticity within this special conformation. In addition, the developed DARPins can also be used to specifically detect p63 in cell culture and in primary tissue and thus constitute a very versatile research tool for studying the function of p63.


Asunto(s)
Proteínas de Repetición de Anquirina Diseñadas , Proteína p53 Supresora de Tumor , Proteína p53 Supresora de Tumor/metabolismo , Proteína Tumoral p73/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , ADN/química
13.
Cell Death Dis ; 13(3): 204, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246516

RESUMEN

Specialized surveillance mechanisms are essential to maintain the genetic integrity of germ cells, which are not only the source of all somatic cells but also of the germ cells of the next generation. DNA damage and chromosomal aberrations are, therefore, not only detrimental for the individual but affect the entire species. In oocytes, the surveillance of the structural integrity of the DNA is maintained by the p53 family member TAp63α. The TAp63α protein is highly expressed in a closed and inactive state and gets activated to the open conformation upon the detection of DNA damage, in particular DNA double-strand breaks. To understand the cellular response to DNA damage that leads to the TAp63α triggered oocyte death we have investigated the RNA transcriptome of oocytes following irradiation at different time points. The analysis shows enhanced expression of pro-apoptotic and typical p53 target genes such as CDKn1a or Mdm2, concomitant with the activation of TAp63α. While DNA repair genes are not upregulated, inflammation-related genes become transcribed when apoptosis is initiated by activation of STAT transcription factors. Furthermore, comparison with the transcriptional profile of the ΔNp63α isoform from other studies shows only a minimal overlap, suggesting distinct regulatory programs of different p63 isoforms.


Asunto(s)
Transactivadores , Proteína p53 Supresora de Tumor , Apoptosis/genética , ADN/metabolismo , Oocitos/metabolismo , Fosfoproteínas/metabolismo , Isoformas de Proteínas/metabolismo , Transactivadores/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
14.
Mol Cell ; 82(11): 2006-2020.e8, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35353987

RESUMEN

CK1s are acidophilic serine/threonine kinases with multiple critical cellular functions; their misregulation contributes to cancer, neurodegenerative diseases, and sleep phase disorders. Here, we describe an evolutionarily conserved mechanism of CK1 activity: autophosphorylation of a threonine (T220 in human CK1δ) located at the N terminus of helix αG, proximal to the substrate binding cleft. Crystal structures and molecular dynamics simulations uncovered inherent plasticity in αG that increased upon T220 autophosphorylation. The phosphorylation-induced structural changes significantly altered the conformation of the substrate binding cleft, affecting substrate specificity. In T220 phosphorylated yeast and human CK1s, activity toward many substrates was decreased, but we also identified a high-affinity substrate that was phosphorylated more rapidly, and quantitative phosphoproteomics revealed that disrupting T220 autophosphorylation rewired CK1 signaling in Schizosaccharomyces pombe. T220 is present exclusively in the CK1 family, thus its autophosphorylation may have evolved as a unique regulatory mechanism for this important family.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Quinasa Idelta de la Caseína , Humanos , Fosforilación , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Transducción de Señal , Especificidad por Sustrato , Treonina
15.
Cell Death Differ ; 29(5): 921-937, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35314772

RESUMEN

The p53 protein family is the most studied protein family of all. Sequence analysis and structure determination have revealed a high similarity of crucial domains between p53, p63 and p73. Functional studies, however, have shown a wide variety of different tasks in tumor suppression, quality control and development. Here we review the structure and organization of the individual domains of p63 and p73, the interaction of these domains in the context of full-length proteins and discuss the evolutionary origin of this protein family. FACTS: Distinct physiological roles/functions are performed by specific isoforms. The non-divided transactivation domain of p63 has a constitutively high activity while the transactivation domains of p53/p73 are divided into two subdomains that are regulated by phosphorylation. Mdm2 binds to all three family members but ubiquitinates only p53. TAp63α forms an autoinhibited dimeric state while all other vertebrate p53 family isoforms are constitutively tetrameric. The oligomerization domain of p63 and p73 contain an additional helix that is necessary for stabilizing the tetrameric states. During evolution this helix got lost independently in different phylogenetic branches, while the DNA binding domain became destabilized and the transactivation domain split into two subdomains. OPEN QUESTIONS: Is the autoinhibitory mechanism of mammalian TAp63α conserved in p53 proteins of invertebrates that have the same function of genomic quality control in germ cells? What is the physiological function of the p63/p73 SAM domains? Do the short isoforms of p63 and p73 have physiological functions? What are the roles of the N-terminal elongated TAp63 isoforms, TA* and GTA?


Asunto(s)
Proteína p53 Supresora de Tumor , Proteínas Supresoras de Tumor , Animales , Proteínas de Unión al ADN/metabolismo , Mamíferos/metabolismo , Proteínas Nucleares/metabolismo , Filogenia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Tumoral p73/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
16.
Oncogene ; 41(3): 372-386, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34759346

RESUMEN

Polo-like kinase 1 (PLK1) is a crucial regulator of cell cycle progression. It is established that the activation of PLK1 depends on the coordinated action of Aurora-A and Bora. Nevertheless, very little is known about the spatiotemporal regulation of PLK1 during G2, specifically, the mechanisms that keep cytoplasmic PLK1 inactive until shortly before mitosis onset. Here, we describe PLK1 dimerization as a new mechanism that controls PLK1 activation. During the early G2 phase, Bora supports transient PLK1 dimerization, thus fine-tuning the timely regulated activation of PLK1 and modulating its nuclear entry. At late G2, the phosphorylation of T210 by Aurora-A triggers dimer dissociation and generates active PLK1 monomers that support entry into mitosis. Interfering with this critical PLK1 dimer/monomer switch prevents the association of PLK1 with importins, limiting its nuclear shuttling, and causes nuclear PLK1 mislocalization during the G2-M transition. Our results suggest a novel conformational space for the design of a new generation of PLK1 inhibitors.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Activación Enzimática/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Técnicas de Cultivo de Célula , Dimerización , Humanos , Transfección , Quinasa Tipo Polo 1
17.
Int J Mol Sci ; 22(14)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34299007

RESUMEN

Ubiquitin fold modifier 1 (UFM1) is a member of the ubiquitin-like protein family. UFM1 undergoes a cascade of enzymatic reactions including activation by UBA5 (E1), transfer to UFC1 (E2) and selective conjugation to a number of target proteins via UFL1 (E3) enzymes. Despite the importance of ufmylation in a variety of cellular processes and its role in the pathogenicity of many human diseases, the molecular mechanisms of the ufmylation cascade remains unclear. In this study we focused on the biophysical and biochemical characterization of the interaction between UBA5 and UFC1. We explored the hypothesis that the unstructured C-terminal region of UBA5 serves as a regulatory region, controlling cellular localization of the elements of the ufmylation cascade and effective interaction between them. We found that the last 20 residues in UBA5 are pivotal for binding to UFC1 and can accelerate the transfer of UFM1 to UFC1. We solved the structure of a complex of UFC1 and a peptide spanning the last 20 residues of UBA5 by NMR spectroscopy. This structure in combination with additional NMR titration and isothermal titration calorimetry experiments revealed the mechanism of interaction and confirmed the importance of the C-terminal unstructured region in UBA5 for the ufmylation cascade.


Asunto(s)
Proteínas/química , Enzimas Activadoras de Ubiquitina/química , Enzimas Ubiquitina-Conjugadoras/química , Rastreo Diferencial de Calorimetría , Expresión Génica , Espectroscopía de Resonancia Magnética , Mutación , Péptidos/química , Unión Proteica , Dominios Proteicos , Proteínas/genética , Proteínas/metabolismo , Proteínas Recombinantes , Termodinámica , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo
18.
J Med Chem ; 64(15): 10682-10710, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980013

RESUMEN

Histone H3K4 methylation serves as a post-translational hallmark of actively transcribed genes and is introduced by histone methyltransferase (HMT) and its regulatory scaffolding proteins. One of these is the WD-repeat-containing protein 5 (WDR5) that has also been associated with controlling long noncoding RNAs and transcription factors including MYC. The wide influence of dysfunctional HMT complexes and the typically upregulated MYC levels in diverse tumor types suggested WDR5 as an attractive drug target. Indeed, protein-protein interface inhibitors for two protein interaction interfaces on WDR5 have been developed. While such compounds only inhibit a subset of WDR5 interactions, chemically induced proteasomal degradation of WDR5 might represent an elegant way to target all oncogenic functions. This study presents the design, synthesis, and evaluation of two diverse WDR5 degrader series based on two WIN site binding scaffolds and shows that linker nature and length strongly influence degradation efficacy.


Asunto(s)
Antineoplásicos/farmacología , Compuestos de Bifenilo/farmacología , Dihidropiridinas/farmacología , Diseño de Fármacos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Compuestos de Bifenilo/síntesis química , Compuestos de Bifenilo/química , Células Cultivadas , Dihidropiridinas/síntesis química , Dihidropiridinas/química , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ligandos , Masculino , Estructura Molecular , Relación Estructura-Actividad
19.
Cancers (Basel) ; 13(3)2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33572532

RESUMEN

The p63 gene encodes a master regulator of epidermal commitment, development, and differentiation. Heterozygous mutations in the DNA binding domain cause Ectrodactyly, Ectodermal Dysplasia, characterized by limb deformation, cleft lip/palate, and ectodermal dysplasia while mutations in in the C-terminal domain of the α-isoform cause Ankyloblepharon-Ectodermal defects-Cleft lip/palate (AEC) syndrome, a life-threatening disorder characterized by skin fragility, severe, long-lasting skin erosions, and cleft lip/palate. The molecular disease mechanisms of these syndromes have recently become elucidated and have enhanced our understanding of the role of p63 in epidermal development. Here we review the molecular cause and functional consequences of these p63-mutations for skin development and discuss the consequences of p63 mutations for female fertility.

20.
Nat Commun ; 12(1): 383, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33452256

RESUMEN

The transcription factor p63 mediates distinct cellular responses, primarily regulating epithelial and oocyte biology. In addition to the two amino terminal isoforms, TAp63 and ΔNp63, the 3'-end of p63 mRNA undergoes tissue-specific alternative splicing that leads to several isoforms, including p63α, p63ß and p63γ. To investigate in vivo how the different isoforms fulfil distinct functions at the cellular and developmental levels, we developed a mouse model replacing the p63α with p63ß by deletion of exon 13 in the Trp63 gene. Here, we report that whereas in two organs physiologically expressing p63α, such as thymus and skin, no abnormalities are detected, total infertility is evident in heterozygous female mice. A sharp reduction in the number of primary oocytes during the first week after birth occurs as a consequence of the enhanced expression of the pro-apoptotic transcriptional targets Puma and Noxa by the tetrameric, constitutively active, TAp63ß isoform. Hence, these mice show a condition of ovary dysfunction, resembling human primary ovary insufficiency. Our results show that the p63 C-terminus is essential in TAp63α-expressing primary oocytes to control cell death in vivo, expanding the current understanding of human primary ovarian insufficiency.


Asunto(s)
Infertilidad Femenina/genética , Oocitos/patología , Insuficiencia Ovárica Primaria/genética , Transactivadores/genética , Empalme Alternativo/genética , Animales , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/genética , Células Cultivadas , Modelos Animales de Enfermedad , Exones/genética , Femenino , Heterocigoto , Humanos , Infertilidad Femenina/patología , Masculino , Ratones , Mutación , Cultivo Primario de Células , Insuficiencia Ovárica Primaria/complicaciones , Insuficiencia Ovárica Primaria/patología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Transactivadores/metabolismo , Activación Transcripcional , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA