Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
ACS Appl Mater Interfaces ; 16(22): 28209-28221, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38778020

RESUMEN

Diabetic chronic wounds are notoriously difficult to heal as a result of their susceptibility to infection. To address this issue, we constructed an innovated and adaptable solution in the form of injectable chitosan (CS) hydrogel, denoted as CCOD, with enhanced antibacterial and anti-inflammatory properties. This hydrogel is created through a Schiff base reaction that combines chitosan-grafted chlorogenic acid (CS-CGA) and oxidized hyaluronic acid (OHA) with deferoxamine (DFO) as a model drug. The combination of CS and CGA has demonstrated excellent antibacterial and anti-inflammatory properties, while grafting played a pivotal role in making these positive effects stable. These unique features make it possible to customize injectable hydrogel and fit any wound shape, allowing for more effective and personalized treatment of complex bacterial infections. Furthermore, the hydrogel system is not only effective against inflammation and bacterial infections but also possesses antioxidant and angiogenic abilities, making it an ideal solution for the repair of chronic wounds that have been previously thought of as unmanageable.


Asunto(s)
Antibacterianos , Antiinflamatorios , Quitosano , Ácido Clorogénico , Deferoxamina , Ácido Hialurónico , Hidrogeles , Cicatrización de Heridas , Quitosano/química , Quitosano/farmacología , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Deferoxamina/química , Deferoxamina/farmacología , Cicatrización de Heridas/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Animales , Ácido Clorogénico/química , Ácido Clorogénico/farmacología , Ácido Clorogénico/administración & dosificación , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/administración & dosificación , Ratones , Humanos , Oxidación-Reducción , Inductores de la Angiogénesis/farmacología , Inductores de la Angiogénesis/química , Inductores de la Angiogénesis/administración & dosificación , Inductores de la Angiogénesis/uso terapéutico , Neovascularización Fisiológica/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Angiogénesis
2.
Acta Biochim Pol ; 71: 12377, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38721303

RESUMEN

Background: Goal-directed fluid therapy, as a crucial component of accelerated rehabilitation after surgery, plays a significant role in expediting postoperative recovery and enhancing the prognosis of major surgical procedures. Methods: In line with this, the present study aimed to investigate the impact of target-oriented fluid therapy on volume management during ERAS protocols specifically for gastrointestinal surgery. Patients undergoing gastrointestinal surgery at our hospital between October 2019 and May 2021 were selected as the sample population for this research. Results: 41 cases of gastrointestinal surgery patients were collected from our hospital over 3 recent years. Compared with T1, MAP levels were significantly increased from T2 to T5; cardiac output (CO) was significantly decreased from T2 to T3, and significantly increased from T4 to T5; and SV level was significantly increased from T3 to T5. Compared with T2, HR and cardiac index (CI) were significantly elevated at T1 and at T3-T5. Compared with T3, SVV was significantly decreased at T1, T2, T4, and T5; CO and stroke volume (SV) levels were increased significantly at T4 and T5. In this study, pressor drugs were taken for 23 days, PACU residence time was 40.22 ± 12.79 min, time to get out of bed was 12.41 ± 3.97 h, exhaust and defecation time was 18.11 ± 7.52 h, and length of postoperative hospital stay was 4.47 ± 1.98 days. The average HAMA score was 9.11 ± 2.37, CRP levels were 10.54 ± 3.38 mg/L, adrenaline levels were 132.87 ± 8.97 ng/L, and cortisol levels were 119.72 ± 4.08 ng/L. Prealbumin levels were 141.98 ± 10.99 mg/L at 3 d after surgery, and 164.17 ± 15.84 mg/L on the day of discharge. Lymphocyte count was 1.22 ± 0.18 (109/L) at 3 d after surgery, and 1.47 ± 0.17 (109/L) on the day of discharge. Serum albumin levels were 30.51 ± 2.28 (g/L) at 3 d after surgery, and 33.52 ± 2.07 (g/L) on the day of discharge. Conclusion: Goal-directed fluid therapy (GDFT) under the concept of Enhanced Recovery After Surgery (ERAS) is helpful in volume management during radical resection of colorectal tumors, with good postoperative recovery. Attention should be paid to the influence of pneumoperitoneum and intraoperative posture on GDFT parameters.


Asunto(s)
Procedimientos Quirúrgicos del Sistema Digestivo , Fluidoterapia , Humanos , Fluidoterapia/métodos , Masculino , Femenino , Persona de Mediana Edad , Procedimientos Quirúrgicos del Sistema Digestivo/métodos , Procedimientos Quirúrgicos del Sistema Digestivo/rehabilitación , Anciano , Recuperación Mejorada Después de la Cirugía , Volumen Sistólico , Tiempo de Internación/estadística & datos numéricos , Gasto Cardíaco , Adulto
3.
Mol Biol Rep ; 51(1): 550, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642183

RESUMEN

BACKGROUND: The therapeutic efficacy of intra-articular mesenchymal stem cells (MSCs) injection for patients with osteoarthritis (OA) currently exhibits inconsistency, and the underlying mechanism remains elusive. It has been postulated that the immunomodulatory properties and paracrine activity of MSCs might be influenced by the inflammatory micro-environment within osteoarthritic joints, potentially contributing to this observed inconsistency. METHODS: Adipose-derived MSCs (ADSCs) were isolated from SD rats and pre-treated with Toll-like receptor 3 (TLR3) agonist Poly I:C or Toll-like receptor 4 (TLR4) agonist LPS. The pre-treated ADSCs were then co-cultured with IL-1ß-induced osteoarthritic chondrocytes using a Transwell system to analyze the paracrine effect of ADSCs on reversing the osteoarthritic phenotype of chondrocytes. RESULTS: RT-PCR and Western blot analysis revealed that Poly I:C and LPS pre-treatments up-regulated the expression of IL-10 and IL-6 in ADSCs, respectively. Furthermore, only Poly I:C-preconditioned ADSCs significantly promoted proliferation while inhibiting apoptosis in IL-1ß-treated chondrocytes. Additionally, Poly I:C-preconditioned ADSCs downregulated MMP13 expression while upregulating aggrecan and collagen II expression levels in IL-1ß-treated chondrocytes. CONCLUSIONS: TLR3 activation polarizes ADSCs into an immunomodulatory phenotype distinct from TLR4 activation, exerting differential effects on reversing the osteoarthritic phenotype of chondrocytes; thus indicating that MSCs' paracrine effect regulated by TLRs signaling impacts the efficacy of intra-articular MSCs injection.


Asunto(s)
Condrocitos , Células Madre Mesenquimatosas , Humanos , Ratas , Animales , Condrocitos/metabolismo , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 3/genética , Receptor Toll-Like 3/metabolismo , Células Cultivadas , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Ratas Sprague-Dawley , Células Madre Mesenquimatosas/metabolismo , Receptores Toll-Like/metabolismo , Fenotipo , Poli I/metabolismo , Poli I/farmacología
4.
J Imaging Inform Med ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38361006

RESUMEN

We aimed to develop and validate a deep learning-based system using pre-therapy computed tomography (CT) images to detect epidermal growth factor receptor (EGFR)-mutant status in patients with non-small cell lung cancer (NSCLC) and predict the prognosis of advanced-stage patients with EGFR mutations treated with EGFR tyrosine kinase inhibitors (TKI). This retrospective, multicenter study included 485 patients with NSCLC from four hospitals. Of them, 339 patients from three centers were included in the training dataset to develop an EfficientNetV2-L-based model (EME) for predicting EGFR-mutant status, and the remaining patients were assigned to an independent test dataset. EME semantic features were extracted to construct an EME-prognostic model to stratify the prognosis of EGFR-mutant NSCLC patients receiving EGFR-TKI. A comparison of EME and radiomics was conducted. Additionally, we included patients from The Cancer Genome Atlas lung adenocarcinoma dataset with both CT images and RNA sequencing data to explore the biological associations between EME score and EGFR-related biological processes. EME obtained an area under the curve (AUC) of 0.907 (95% CI 0.840-0.926) on the test dataset, superior to the radiomics model (P = 0.007). The EME and radiomics fusion model showed better (AUC, 0.941) but not significantly increased performance (P = 0.895) compared with EME. In prognostic stratification, the EME-prognostic model achieved the best performance (C-index, 0.711). Moreover, the EME-prognostic score showed strong associations with biological pathways related to EGFR expression and EGFR-TKI efficacy. EME demonstrated a non-invasive and biologically interpretable approach to predict EGFR status, stratify survival prognosis, and correlate biological pathways in patients with NSCLC.

5.
Clin Breast Cancer ; 23(7): 729-736, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37481337

RESUMEN

OBJECTIVE: To investigate the diagnostic performance of a mammography-based radiomics model for distinguishing phyllodes tumors (PTs) from fibroadenomas (FAs) of the breast. MATERIALS AND METHODS: A total of 156 patients were retrospectively included (75 with PTs, 81 with FAs) and divided into training and validation groups at a ratio of 7:3. Radiomics features were extracted from craniocaudal and mediolateral oblique images. The least absolute shrinkage and selection operator (LASSO) algorithm and principal component analysis (PCA) were performed to select features. Three machine learning classifiers, including logistic regression (LR), K-nearest neighbor classifier (KNN) and support vector machine (SVM), were implemented in the radiomics model, imaging model and combined model. Receiver operating characteristic curves, area under the curve (AUC), sensitivity and specificity were computed. RESULTS: Among 1084 features, the LASSO algorithm selected 17 features, and PCA further selected 6 features. Three machine learning classifiers yielded the same AUC of 0.935 in the validation group for the radiomics model. In the imaging model, KNN yielded the highest accuracy rate of 89.4% and AUC of 0.947 in the validation set. For the combined model, the SVM classifier reached the highest AUC of 0.918 with an accuracy rate of 86.2%, sensitivity of 83.9%, and specificity of 89.4% in the training group. In the validation group, LR yielded the highest AUC of 0.973. The combined model had a relatively higher AUC than the radiomics model or imaging model, especially in the validation group. CONCLUSIONS: Mammography-based radiomics features demonstrate good diagnostic performance for discriminating PTs from FAs.


Asunto(s)
Neoplasias de la Mama , Fibroadenoma , Tumor Filoide , Humanos , Femenino , Fibroadenoma/diagnóstico por imagen , Tumor Filoide/diagnóstico por imagen , Estudios Retrospectivos , Neoplasias de la Mama/diagnóstico por imagen , Mamografía , Aprendizaje Automático
6.
Cardiovasc Res ; 119(8): 1763-1779, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-36943764

RESUMEN

AIMS: The plasticity of vascular smooth muscle cells (VSMCs) enables them to alter phenotypes under various physiological and pathological stimuli. The alteration of VSMC phenotype is a key step in vascular diseases, including atherosclerosis. Although the transcriptome shift during VSMC phenotype alteration has been intensively investigated, uncovering multiple key regulatory signalling pathways, the translatome dynamics in this cellular process, remain largely unknown. Here, we explored the genome-wide regulation at the translational level of human VSMCs during phenotype alteration. METHODS AND RESULTS: We generated nucleotide-resolution translatome and transcriptome data from human VSMCs undergoing phenotype alteration. Deep sequencing of ribosome-protected fragments (Ribo-seq) revealed alterations in protein synthesis independent of changes in messenger ribonucleicacid levels. Increased translational efficiency of many translational machinery components, including ribosomal proteins, eukaryotic translation elongation factors and initiation factors were observed during the phenotype alteration of VSMCs. In addition, hundreds of candidates for short open reading frame-encoded polypeptides (SEPs), a class of peptides containing 200 amino acids or less, were identified in a combined analysis of translatome and transcriptome data with a high positive rate in validating their coding capability. Three evolutionarily conserved SEPs were further detected endogenously by customized antibodies and suggested to participate in the pathogenesis of atherosclerosis by analysing the transcriptome and single cell RNA-seq data from patient atherosclerotic artery samples. Gain- and loss-of-function studies in human VSMCs and genetically engineered mice showed that these SEPs modulate the alteration of VSMC phenotype through different signalling pathways, including the mitogen-activated protein kinase pathway and p53 pathway. CONCLUSION: Our study indicates that an increase in the capacity of translation, which is attributable to an increased quantity of translational machinery components, mainly controls alterations of VSMC phenotype at the level of translational regulation. In addition, SEPs could function as important regulators in the phenotype alteration of human VSMCs.


Asunto(s)
Aterosclerosis , Músculo Liso Vascular , Ratones , Animales , Humanos , Músculo Liso Vascular/metabolismo , Sistemas de Lectura Abierta , Células Cultivadas , Fenotipo , Aterosclerosis/patología , Péptidos/genética , Miocitos del Músculo Liso/metabolismo , Proliferación Celular
7.
Org Lett ; 24(44): 8192-8196, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36318750

RESUMEN

A bromoalkane-directed radical 1,4-aryl shift strategy for nickel-catalyzed reductive Heck-type C(sp3)-C(sp2) coupling cascades of α-amino-ß-bromocarboxylic acid esters with α-trifluoromethyl alkenes for producing gem-difluorinated arylalanines is presented. The α-aminoalkyl radicals generated from neophyl-type aryl migration function as robust coupling partners to allow for further Giese-type addition with electron-deficient α-trifluoromethyl alkenes and vinyl sulfones, thereby realizing a new radical cascade for the simultaneous installation of an aromatic ring and olefin motif into amino acid backbones.

8.
World J Surg Oncol ; 20(1): 256, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35948931

RESUMEN

Gastrointestinal melanoma is usually metastatic in origin, and primary melanoma within the gastrointestinal tract is rarely reported. Colon is considered to be an extremely uncommon site for primary melanomas. Herein, we report the first case of a large primary melanoma within the transverse colon with gastric involvement. CT scan found a mass within the colon, which seemed to connect to the gastric antrum. Esophagogastroscopy showed an ulcerated lesion in the greater curvature of the stomach. Subsequent colonoscopy identified a large ulcerated lesion rendering significant stenosis of the transverse colon. Biopsy following colonoscopy indicated a diagnosis of colonic melanoma based on pathological findings, which identified submucosal malignant melanoma cells with epithelioid and spindle features. Immunohistochemical stains were positive for S-100, HMB-45, Vimentin, and Melan-A. A series of clinical and imaging examinations revealed no suspicious primary cutaneous or ocular lesions. The diagnosis of primary colonic melanoma was considered. A radical transverse colectomy with subtotal gastrectomy were conducted subsequently. Definite diagnosis of primary colonic melanoma can be established after ruling out the possibility of being a metastasis from other more common primary sites. Primary colonic melanomas are a challenge to diagnose and often need a multidisciplinary treatment approach, including surgery, BRAF-targeted therapy, and immunotherapy.


Asunto(s)
Neoplasias del Colon , Melanoma , Colectomía , Neoplasias del Colon/patología , Humanos , Melanoma/cirugía , Proteínas S100
9.
Front Cardiovasc Med ; 9: 852775, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35295259

RESUMEN

Enhancement of protein synthesis from mRNA translation is one of the key steps supporting cardiomyocyte hypertrophy during cardiac remodeling. The methyltransferase-like5 (METTL5), which catalyzes m6A modification of 18S rRNA at position A1832, has been shown to regulate the efficiency of mRNA translation during the differentiation of ES cells and the growth of cancer cells. It remains unknown whether and how METTL5 regulates cardiac hypertrophy. In this study, we have generated a mouse model, METTL5-cKO, with cardiac-specific depletion of METTL5 in vivo. Loss function of METTL5 promotes pressure overload-induced cardiomyocyte hypertrophy and adverse remodeling. The regulatory function of METTL5 in hypertrophic growth of cardiomyocytes was further confirmed with both gain- and loss-of-function approaches in primary cardiomyocytes. Mechanically, METTL5 can modulate the mRNA translation of SUZ12, a core component of PRC2 complex, and further regulate the transcriptomic shift during cardiac hypertrophy. Altogether, our study may uncover an important translational regulator of cardiac hypertrophy through m6A modification.

10.
Arterioscler Thromb Vasc Biol ; 42(5): 644-658, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35296150

RESUMEN

BACKGROUND: N6-methyladenosine (m6A) plays a critical role in various biological processes. However, no study has addressed the role of m6A modification in the statin-induced protection of endothelial cells (ECs). METHODS: Quantitative real-time polymerase chain reaction and Western blotting analyses were used to study the expression of m6A regulatory genes in atorvastatin-treated ECs. Gain- and loss-of-function assays, methylated RNA immunoprecipitation analysis, and dual-luciferase reporter assays were performed to clarify the function of FTO (fat mass and obesity-associated protein) in ECs. RESULTS: Atorvastatin decreased FTO protein expression in ECs. The knockdown of FTO enhanced the mRNA and protein expression of KLF2 (Kruppel-like factor 2) and eNOS (endothelial NO synthase) but attenuated TNFα (tumor necrosis factor alpha)-induced VCAM-1 (vascular cell adhesion molecule 1) and ICAM-1 (intercellular adhesion molecule 1) expression, as well as the adhesion of monocytes to ECs. Conversely, FTO overexpression significantly upregulated the mRNA and protein levels of VCAM-1 and ICAM-1, downregulated those of KLF2 and eNOS, and strongly attenuated the atorvastatin-mediated induction of KLF2 and eNOS expression. Subsequent investigations demonstrated that KLF2 and eNOS are functionally critical targets of FTO. Mechanistically, FTO interacted with KLF2 and eNOS transcripts and regulated their expression in an m6A-dependent manner. After FTO silencing, KLF2 and eNOS transcripts with higher levels of m6A modification in their 3' untranslated regions were captured by YTHDF3 (YT521-B homology m6A RNA-binding protein 3), resulting in mRNA stabilization and the induction of KLF2 and eNOS protein expression. CONCLUSIONS: FTO might serve as a novel molecular target to modulate endothelial function in vascular diseases.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/farmacología , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Atorvastatina/farmacología , Células Endoteliales/metabolismo , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Molécula 1 de Adhesión Intercelular , Obesidad/genética , ARN Mensajero/genética , Molécula 1 de Adhesión Celular Vascular
11.
Ann Clin Lab Sci ; 52(1): 86-94, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35181621

RESUMEN

OBJECTIVE: Colorectal cancer (CRC) is a common prevalent malignant tumor globally. The prognosis of CRC patients remains poor due to a lack of effective treatment strategy. Proline-rich 11 (PRR11) is an emerging oncogene in cancers, while its effect in CRC remains unclear. Hence, the present study aimed to identify the function of PRR11 on CRC progression and study the detailed mechanism. METHODS: Cell proliferation ability was determined by Cell Counting Kit-8 (CCK-8) assay and 5-ethynyl-2'-deoxyuridine (EdU) staining. Transwell invasion assay detected cell invasion ability. Wound healing assay assessed cell migration ability. Xenograft tumor was established to evaluate tumor growth. Quantitative real-time polymerase chain reaction (qRT-PCR), Western blot and immunohistochemistry were performed to determine mRNA or protein levels. RESULTS: PRR11 was elevated in CRC. PRR11 silencing suppressed CRC cell proliferation, invasion, and migration ability. Besides, PRR11 silencing inhibited EGFR/ ERK/ AKT pathway via restraining Collagen triple helix repeat containing-1 (CTHRC1) expression. Furthermore, knockdown of PRR11 suppressed CRC tumor growth in vivo. CONCLUSION: PRR11 was highly expressed in CRC. PRR11 silencing suppressed proliferation, invasion, migration, and tumor growth of CRC through inhibiting the EGFR/ERK/AKT pathway via restraining CTHRC1 expression. PRR11 may be a valuable therapeutic target for CRC.


Asunto(s)
Neoplasias Colorrectales , Proteínas , Proteínas Proto-Oncogénicas c-akt , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Neoplasias Colorrectales/patología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteínas de la Matriz Extracelular/genética , Silenciador del Gen , Humanos , Proteínas/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
12.
Bioengineered ; 13(1): 12-26, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34967274

RESUMEN

Long non-coding RNAs (lncRNAs) are related to the initiation and progression of tumor and regulate various cellular processes including growth, invasion, migration, and apoptosis. Understanding the roles and mechanisms of lncRNAs in regulating cancer progression is crucial for formulating novel therapeutic strategies. Although lncRNA DCST1-antisense RNA 1(AS1) has been implicated in several cancers, its role in the progression of colorectal cancer (CRC) remains to be explored. This study focuses on elucidating the function of lncRNA DCST1-AS1 in CRC development and its underlying mechanism. We found that the expression of lncRNA DCST1-AS1 was up-regulated in CRC tissues and cell lines, and CRC patients with high lncRNA DCST1-AS1 expression were associated with a poor prognosis. Loss-of-function and gain-of-function experiment in CRC cell lines confirmed that lncRNA DCST1-AS1 promoted the malignant phenotype of CRC cells, including cell proliferation, colony formation, migration, and invasion. In addition, we identified the binding sites between lncRNA DCST1-AS1 and hsa-miR-582-5p, and between hsa-miR-582-5p and High Mobility Group Box 1 (HMGB1) through DIANA Tools and TargetScan database, which was further confirmed by dual-luciferase reporter assay. Functional assay further confirmed the crucial role of lncRNA DCST1-AS1/hsa-miR-582-5p/HMGB1 axis in modulating the malignant phenotype of CRC cells. Collectively, our data suggest that lncRNA DCST1-AS1 regulates the aggressiveness of CRC cells through hsa-miR-582-5p/HMGB1 axis. Our study provides novel insight into the mechanism of lncRNA DCST1-AS1 in CRC cells for targeted therapy.


Asunto(s)
Neoplasias Colorrectales/patología , Proteína HMGB1/genética , MicroARNs/genética , ARN Largo no Codificante/genética , Regulación hacia Arriba , Regiones no Traducidas 5' , Animales , Apoptosis , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales/genética , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Células HT29 , Humanos , Ratones , Trasplante de Neoplasias , Pronóstico
13.
Ann Clin Lab Sci ; 51(3): 339-346, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34162563

RESUMEN

OBJECTIVE: To investigate the role of circular RNA MYLK (circMYLK) in colorectal cancer (CRC). METHODS: Patients with CRC were enrolled and cancerous tissues were collected. CircMYLK expression was measured by quantitative real-time polymerase chain reaction (qRT-PCR). The diagnostic value of circMYLK was determined by ROC curve. In vitro knockdown of circMYLK was carried out to investigate the proliferation, migration and invasion capabilities of CRC cell lines. RESULTS: We first found that circMYLK expression was markedly enhanced in human CRC tissues, serum and cell lines, which was correlated with poor prognosis and some detrimental clinical characteristics. ROC curve showed that circMYLK could be a diagnostic biomarker of CRC. The proliferation ability of CRC cells was markedly inhibited, while higher apoptosis rate was induced after circMYLK deplition. In addition, the migration and invasion abilities of CRC cells were suppressed following circMYLK silencing. CONCLUSION: Our results implicate that circMYLK functions as oncogenic stimuli in CRC and may be a novel diagnostic and therapeutic targets of CRC.


Asunto(s)
Biomarcadores de Tumor/genética , Proteínas de Unión al Calcio/genética , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Quinasa de Cadena Ligera de Miosina/genética , ARN Circular/genética , Apoptosis , Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Pronóstico , Tasa de Supervivencia , Células Tumorales Cultivadas
14.
Front Cell Dev Biol ; 9: 642533, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33968928

RESUMEN

Objective: Many tissues contained resident mesenchymal stromal/stem cells (MSCs) that facilitated tissue hemostasis and repair. However, there is no typical marker to identify the resident cardiac MSCs. We aimed to determine if CD51 could be an optimal marker of cardiac MSCs and assess their therapeutic potential for mice with acute myocardial infarction (AMI). Methods: Cardiac-derived CD51+CD31-CD45-Ter119- cells (named CD51+cMSCs) were isolated from C57BL/6 mice(7-day-old) by flow cytometry. The CD51+cMSCs were characterized by proliferation capacity, multi-differentiation potential, and expression of typical MSC-related markers. Adult C57BL/6 mice (12-week-old) were utilized for an AMI model via permanently ligating the left anterior descending coronary artery. The therapeutic efficacy of CD51+cMSCs was estimated by echocardiography and pathological staining. To determine the underlying mechanism, lentiviruses were utilized to knock down gene (stem cell factor [SCF]) expression of CD51+cMSCs. Results: In this study, CD51 was expressed in the entire layers of the cardiac wall in mice, including endocardium, epicardium, and myocardium, and its expression was decreased with age. Importantly, the CD51+cMSCs possessed potent self-renewal potential and multi-lineage differentiation capacity in vitro and also expressed typical MSC-related surface proteins. Furthermore, CD51+cMSC transplantation significantly improved cardiac function and attenuated cardiac fibrosis through pro-angiogenesis activity after myocardial infarction in mice. Moreover, SCF secreted by CD51+cMSCs played an important role in angiogenesis both in vivo and in vitro. Conclusions: Collectively, CD51 is a novel marker of cardiac resident MSCs, and CD51+cMSC therapy enhances cardiac repair at least partly through SCF-mediated angiogenesis.

15.
Biotechnol Lett ; 43(7): 1443-1453, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33877517

RESUMEN

OBJECTIVES: Although halophilic archaea are rich in natural environments, their biotechnological applications are not as prevalent as those of other extremophiles, such as thermophiles and alkaliphiles. This study presents an simple method to prepare a hydrogel composite using crude cell lysate of a halophilic archaea, Halorubrum ejinoor sp. (H.e.) which was isolated from a saline lake in Inner Mongolia, China. Furthermore, formation mechanism and potential applications of the hydrogel as an adsorbing material are discussed. RESULTS: Halorubrum ejinoor sp. (H.e.) cell lysate was firstly prepared by adding pure water onto the H.e. cell pellet, followed by a short incubation at 60 °C. The cell lysate was injected into different metal ion (or H+) solutions to obtain the hydrogel composite. It was observed that H+, Fe3+, La3+, Cu2+, and Ca2+ induced gelation of the cell lysate, while Fe2+, Co2+, Ni2+, Mg2+, Na+, and K+ did not. DNA and extracellular polysaccharides (EPS) in the H.e. cell lysate were found to be responsible for the gelation reaction. These results suggest that DNA and EPS should be crosslinked by metal ions (or H+) and form a networked structure in which the metal ion (or H+) serves as an anchor point. Potential application of the hydrogel as an adsorbing material was explored using La3+-induced H.e. hydrogel composite. The hydrogel composite can adsorb the fluoride, phosphate and DNA-binding carcinogenic agents, such as acridine orange. CONCLUSIONS: The simplicity and cost effectiveness of the preparation method might make H.e. hydrogel a promising adsorbing material. This work is expected to expand the technical applications of haloarchaea.


Asunto(s)
Extractos Celulares/química , Halorubrum/química , Hidrogeles/síntesis química , Lantano/química , Naranja de Acridina/análisis , Adsorción , ADN de Archaea/química , Fluoruros/análisis , Hidrogeles/química , Fosfatos/análisis , Polisacáridos/química
16.
Mol Ther ; 28(3): 855-873, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-31991111

RESUMEN

Mesenchymal stromal cells (MSCs) show potential for treating cardiovascular diseases, but their therapeutic efficacy exhibits significant heterogeneity depending on the tissue of origin. This study sought to identify an optimal source of MSCs for cardiovascular disease therapy. We demonstrated that Nestin was a suitable marker for cardiac MSCs (Nes+cMSCs), which were identified by their self-renewal ability, tri-lineage differentiation potential, and expression of MSC markers. Furthermore, compared with bone marrow-derived MSCs (Nes+bmMSCs) or saline-treated myocardial infarction (MI) controls, intramyocardial injection of Nes+cMSCs significantly improved cardiac function and decreased infarct size after acute MI (AMI) through paracrine actions, rather than transdifferentiation into cardiac cells in infarcted heart. We further revealed that Nes+cMSC treatment notably reduced pan-macrophage infiltration while inducing macrophages toward an anti-inflammatory M2 phenotype in ischemic myocardium. Interestingly, Periostin, which was highly expressed in Nes+cMSCs, could promote the polarization of M2-subtype macrophages, and knockdown or neutralization of Periostin remarkably reduced the therapeutic effects of Nes+cMSCs by decreasing M2 macrophages at lesion sites. Thus, the present work systemically shows that Nes+cMSCs have greater efficacy than do Nes+bmMSCs for cardiac healing after AMI, and that this occurs at least partly through Periostin-mediated M2 macrophage polarization.


Asunto(s)
Moléculas de Adhesión Celular/genética , Activación de Macrófagos/genética , Macrófagos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Isquemia Miocárdica/etiología , Isquemia Miocárdica/metabolismo , Nestina/metabolismo , Cicatrización de Heridas/genética , Animales , Biomarcadores , Moléculas de Adhesión Celular/metabolismo , Diferenciación Celular , Modelos Animales de Enfermedad , Genotipo , Inmunofenotipificación , Células Madre Mesenquimatosas/citología , Ratones , Ratones Transgénicos , Isquemia Miocárdica/patología
17.
Braz. j. med. biol. res ; 53(1): e9136, Jan. 2020. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1055487

RESUMEN

The aim of this study was to investigate the influence of enhanced external counterpulsation (EECP) on the cardiac function of beagle dogs after prolonged ventricular fibrillation. Twenty-four adult male beagles were randomly divided into control and EECP groups. Ventricular fibrillation was induced in the animals for 12 min, followed by 2 min of cardiopulmonary resuscitation. They then received EECP therapy for 4 h (EECP group) or not (control group). The hemodynamics was monitored using the PiCCO2 system. Blood gas and hemorheology were assessed at baseline and at 1, 2, and 4 h after return of spontaneous circulation (ROSC). The myocardial blood flow (MBF) was quantified by 18F-flurpiridaz PET myocardial perfusion imaging at baseline and 4 h after ROSC. Survival time of the animals was recorded within 24 h. Ventricular fibrillation was successfully induced in all animals, and they achieved ROSC after cardiopulmonary resuscitation. Survival time of the control group was shorter than that of the EECP group [median of 8 h (min 8 h, max 21 h) vs median of 24 h (min 16 h, max 24 h) (Kaplan Meyer plot analysis, P=0.0152). EECP improved blood gas analysis findings and increased the coronary perfusion pressure and MBF value. EECP also improved the cardiac function of Beagles after ROSC in multiple aspects, significantly increased blood flow velocity, and decreased plasma viscosity, erythrocyte aggregation index, and hematocrit levels. EECP improved the hemodynamics of beagle dogs and increased MBF, subsequently improving cardiac function and ultimately improving the survival time of animals after ROSC.


Asunto(s)
Animales , Masculino , Perros , Contrapulsación/métodos , Reanimación Cardiopulmonar/métodos , Hemodinámica/fisiología , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Estimación de Kaplan-Meier
18.
Hypertension ; 75(1): 79-90, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31735087

RESUMEN

Transcribed ultraconserved regions (T-UCRs) are a novel class of long noncoding RNAs transcribed from UCRs, which exhibit 100% DNA sequence conservation among humans, mice, and rats. However, whether T-UCRs regulate cardiac hypertrophy remains unclear. We aimed to explore the effects of T-UCRs on cardiac hypertrophy. First, we performed long noncoding RNA microarray analysis on hearts of mice subjected to sham surgery or aortic banding and found that the T-UCR uc.323 was decreased significantly in mice with aortic banding-induced cardiac hypertrophy. In vitro loss- and gain-of-function experiments demonstrated that uc.323 protected cardiomyocytes against hypertrophy induced by phenylephrine. Additionally, we discovered that mammalian target of rapamycin 1 contributed to phenylephrine-induced uc.323 downregulation and uc.323-mediated cardiomyocyte hypertrophy. We further mapped the possible target genes of uc.323 through global microarray mRNA expression analysis after uc.323 knockdown and found that uc.323 regulated the expression of cardiac hypertrophy-related genes such as CPT1b (Carnitine Palmitoyl transferase 1b). Then, chromatin immunoprecipitation proved that EZH2 (enhancer of zeste homolog 2) bound to the promoter of CPT1b via H3K27me3 (trimethylation of lysine 27 of histone H3) to induce CPT1b downregulation. And overexpression of CPT1b could block uc.323-mediated cardiomyocyte hypertrophy. Finally, we found that uc.323 deficiency induced cardiac hypertrophy. Our results reveal that uc.323 is a conserved T-UCR that inhibits cardiac hypertrophy, potentially by regulating the transcription of CPT1b via interaction with EZH2.


Asunto(s)
Cardiomegalia/genética , Carnitina O-Palmitoiltransferasa/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Miocardio/metabolismo , ARN Largo no Codificante/genética , Animales , Cardiomegalia/metabolismo , Carnitina O-Palmitoiltransferasa/metabolismo , Secuencia Conservada , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Regulación de la Expresión Génica , Masculino , Ratones , Miocitos Cardíacos/metabolismo , ARN Largo no Codificante/metabolismo , Ratas , Ratas Sprague-Dawley , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Transcripción Genética
19.
Theranostics ; 9(24): 7268-7281, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31695767

RESUMEN

Rationale: An imbalance between protein synthesis and degradation is one of the mechanisms of cardiac hypertrophy. Increased transcription in cardiomyocytes can lead to excessive protein synthesis and cardiac hypertrophy. Maf1 is an RNA polymerase III (RNA pol III) inhibitor that plays a pivotal role in regulating transcription. However, whether Maf1 regulates of cardiac hypertrophy remains unclear. Methods: Cardiac hypertrophy was induced in vivo by thoracic aortic banding (AB) surgery. Both the in vivo and in vitro gain- and loss-of-function experiments by Maf1 knockout (KO) mice and adenoviral transfection were used to verify the role of Maf1 in cardiac hypertrophy. RNA pol III and ERK1/2 inhibitor were utilized to identify the effects of RNA pol III and ERK1/2. The possible interaction between Maf1 and ERK1/2 was clarified by immunoprecipitation (IP) analysis. Results: Four weeks after surgery, Maf1 KO mice exhibited significantly exacerbated AB-induced cardiac hypertrophy characterized by increased heart size, cardiomyocyte surface area, and atrial natriuretic peptide (ANP) expression and by exacerbated pulmonary edema. Also, the deficiency of Maf1 causes more severe cardiac dilation and dysfunction than wild type (WT) mice after pressure overload. In contrast, compared with adenoviral-GFP injected mice, mice injected with adenoviral-Maf1 showed significantly ameliorated AB-induced cardiac hypertrophy. In vitro study has demonstrated that Maf1 could significantly block phenylephrine (PE)-induced cardiomyocyte hypertrophy by inhibiting RNA pol III transcription. However, application of an RNA pol III inhibitor markedly improved Maf1 knockdown-promoted cardiac hypertrophy. Moreover, ERK1/2 was identified as a regulator of RNA pol III, and ERK1/2 inhibition by U0126 significantly repressed Maf1 knockdown-promoted cardiac hypertrophy accompanied by suppressed RNA pol III transcription. Additionally, IP analysis demonstrated that Maf1 could directly bind ERK1/2, suggesting Maf1 could interact with ERK1/2 and then inhibit RNA pol III transcription so as to attenuate the development of cardiac hypertrophy. Conclusions: Maf1 ameliorates PE- and AB-induced cardiac hypertrophy by inhibiting RNA pol III transcription via ERK1/2 signaling suppression.


Asunto(s)
Cardiomegalia/metabolismo , ARN Polimerasa III/metabolismo , Proteínas Represoras/metabolismo , Animales , Cardiomegalia/etiología , Cardiomegalia/genética , Humanos , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenilefrina/efectos adversos , ARN Polimerasa III/antagonistas & inhibidores , ARN Polimerasa III/genética , Ratas , Ratas Sprague-Dawley , Proteínas Represoras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA