Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Eur J Oncol Nurs ; 70: 102557, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581900

RESUMEN

PURPOSE: To investigate the preparedness, perceived stress, risk of depression, and quality of life of family caregivers of patients receiving a temporary enterostomy, to provide a reference for improving the long-term care and quality of life of patients receiving a temporary enterostomy. METHODS: We enrolled 181 family caregivers of patients in a hospital in China from 2021 to 2023. Responses to the General Information Questionnaire, the Chinese Caregiver Preparedness Scale, the Chinese Perceived Stress Scale, the Chinese bilingual version of the Patient Health Questionnaire-2, and the 12-item Short Form Survey were collected online. RESULTS: Pearson's correlation analysis revealed that family caregivers' risk of depression was negatively correlated with their preparedness, the physical component summary score, and the mental component summary score but was positively correlated with perceived stress. Multiple linear regression analysis identified factors influencing caregiver preparedness. CONCLUSIONS: These findings help healthcare personnel to identify high-risk individuals among family caregivers of patients receiving a temporary enterostomy. This provides a basis for formulating well-planned, dynamic health education programs that meet patients' needs for disease-related knowledge and care.


Asunto(s)
Cuidadores , Enterostomía , Calidad de Vida , Estrés Psicológico , Humanos , Masculino , Femenino , Cuidadores/psicología , Persona de Mediana Edad , Adulto , China , Enterostomía/psicología , Encuestas y Cuestionarios , Anciano , Depresión/epidemiología , Adaptación Psicológica , Estudios Transversales
2.
RSC Adv ; 14(18): 12817-12828, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38645527

RESUMEN

Despite consecutive efforts devoted to the establishment of innovative therapeutics for cancer control, cancer remains as a primary global public health concern. Achieving controlled release of anti-cancer agents may add great value to the field of oncology that requires the involvement of nanotechnologies. Metal organic frameworks (MOFs) hold great promise in this regard owing to their unique structural properties. MOFs can act as superior candidates for drug delivery given their porous structure and large loading area, and can be prepared into anti-cancer therapeutics by incorporating stimuli-sensitive components into the ligands or nodes of the framework. By combing through chemical and physical features of MOFs favorable for onco-therapeutic applications and current cancer treatment portfolios taking advantages of these characteristics, this review classified MOFs feasible for establishing controlled anti-cancer modalities into 6 categories, outlined the corresponding strategies currently available for each type of MOF, and identified understudied areas and future opportunities towards innovative MOF design for improved or expanded clinical anti-cancer applications.

3.
Transl Oncol ; 44: 101932, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38492500

RESUMEN

The genome of oral squamous cell carcinoma (OSCC) has been extensively characterized via bulk sequencing, revealing a multitude of genetic changes. The gene IGF2BP3, which encodes for the insulin-like growth factor 2 mRNA-binding protein 3, has been observed to be highly expressed in several types of cancer. This finding suggests that IGF2BP3 may play a significant role in the initiation and advancement of cancer. Nevertheless, the mechanisms by which IGF2BP3 contribute to OSCC are yet to be fully understood. In this study, we have observed that IGF2BP3 exhibits overexpression in OSCC. Based on our findings from bulk sequencing analysis, we have concluded that IGF2BP3 could potentially serve as a biomarker for predicting poor prognosis in OSCC. Moreover, it has been demonstrated that IGF2BP3 exhibits a significant association with the initiation and advancement of tumors both in vivo and in vitro. The evaluation of IGF2BP3 expression levels in relation to the cell cycle stage was conducted using single-cell RNA sequencing data. Tumor cells characterized by elevated IGF2BP3 expression demonstrated a higher percentage of cells in the G2/M transition phase. This study presents new findings indicating that the molecular target IGF2BP3 can serve as a prognostic indicator for tumors and has an impact on the development and progression of OSCC by influencing the regulation of the cell cycle.

4.
Cell Commun Signal ; 22(1): 168, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454413

RESUMEN

BACKGROUND: The effectiveness of anti-programmed cell death protein 1(PD-1)/programmed cell death 1 ligand 1(PD-L1) therapy in treating certain types of cancer is associated with the level of PD-L1. However, this relationship has not been observed in colorectal cancer (CRC), and the underlying regulatory mechanism of PD-L1 in CRC remains unclear. METHODS: Binding of TMEM160 to PD-L1 was determined by co-immunoprecipitation (Co-IP) and GST pull-down assay.The ubiquitination levels of PD-L1 were verified using the ubiquitination assay. Phenotypic experiments were conducted to assess the role of TMEM160 in CRC cells. Animal models were employed to investigate how TMEM160 contributes to tumor growth.The expression and clinical significance of TMEM160 and PD-L1 in CRC tissues were evaluated by immunohistochemistry(IHC). RESULTS: In our study, we made a discovery that TMEM160 interacts with PD-L1 and plays a role in stabilizing its expression within a CRC model. Furthermore, we demonstrated that TMEM160 hinders the ubiquitination-dependent degradation of PD-L1 by competing with SPOP for binding to PD-L1 in CRC cells. Regarding functionality, the absence of TMEM160 significantly inhibited the proliferation, invasion, metastasis, clonogenicity, and radioresistance of CRC cells, while simultaneously enhancing the cytotoxic effect of CD8 + T cells on tumor cells. Conversely, the upregulation of TMEM160 substantially increased these capabilities. In severely immunodeficient mice, tumor growth derived from lentiviral vector shTMEM160 cells was lower compared with that derived from shNC control cells. Furthermore, the downregulation of TMEM160 significantly restricted tumor growth in immune-competent BALB/c mice. In clinical samples from patients with CRC, we observed a strong positive correlation between TMEM160 expression and PD-L1 expression, as well as a negative correlation with CD8A expression. Importantly, patients with high TMEM160 expression exhibited a worse prognosis compared with those with low or no TMEM160 expression. CONCLUSIONS: Our study reveals that TMEM160 inhibits the ubiquitination-dependent degradation of PD-L1 that is mediated by SPOP, thereby stabilizing PD-L1 expression to foster the malignant progress, radioresistance, and immune evasion of CRC cells. These findings suggest that TMEM160 holds potential as a target for the treatment of patients with CRC.


Asunto(s)
Neoplasias Colorrectales , Animales , Humanos , Ratones , Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos , Neoplasias Colorrectales/patología , Linfocitos Infiltrantes de Tumor , Proteínas Nucleares , Proteínas Represoras , Escape del Tumor
5.
Redox Biol ; 69: 102976, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38052106

RESUMEN

Cold atmospheric plasma (CAP) holds promise as a cancer-specific treatment that selectively kills various types of malignant cells. We used CAP-activated media (PAM) to utilize a range of the generated short- and long-lived reactive species. Specific antibodies, small molecule inhibitors and CRISPR/Cas9 gene-editing approaches showed an essential role for receptor tyrosine kinases, especially epidermal growth factor (EGF) receptor, in mediating triple negative breast cancer (TNBC) cell responses to PAM. EGF also dramatically enhanced the sensitivity and specificity of PAM against TNBC cells. Site-specific phospho-EGFR analysis, signal transduction inhibitors and reconstitution of EGFR-depleted cells with EGFR-mutants confirmed the role of phospho-tyrosines 992/1173 and phospholipase C gamma signaling in up-regulating levels of reactive oxygen species above the apoptotic threshold. EGF-triggered EGFR activation enhanced the sensitivity and selectivity of PAM effects on TNBC cells. The proposed approach based on the synergy of CAP and EGFR-targeted therapy may provide new opportunities to improve the clinical management of TNBC.


Asunto(s)
Factor de Crecimiento Epidérmico , Neoplasias de la Mama Triple Negativas , Humanos , Factor de Crecimiento Epidérmico/farmacología , Factor de Crecimiento Epidérmico/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Línea Celular Tumoral , Receptores ErbB/metabolismo , Transducción de Señal
6.
ACS Pharmacol Transl Sci ; 6(12): 1758-1779, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38093832

RESUMEN

Personalized medicine is a new approach toward safer and even cheaper treatments with minimal side effects and toxicity. Planning a therapy based on individual properties causes an effective result in a patient's treatment, especially in a complex disease such as cancer. The benefits of personalized medicine include not only early diagnosis with high accuracy but also a more appropriate and effective therapeutic approach based on the unique clinical, genetic, and epigenetic features and biomarker profiles of a specific patient's disease. In order to achieve personalized cancer therapy, understanding cancer biology plays an important role. One of the crucial applications of personalized medicine that has gained consideration more recently due to its capability in developing disease therapy is related to the field of stem cells. We review various applications of pluripotent, somatic, and cancer stem cells in personalized medicine, including targeted cancer therapy, cancer modeling, diagnostics, and drug screening. CRISPR-Cas gene-editing technology is then discussed as a state-of-the-art biotechnological advance with substantial impacts on medical and therapeutic applications. As part of this section, the role of CRISPR-Cas genome editing in recent cancer studies is reviewed as a further example of personalized medicine application.

7.
Aging (Albany NY) ; 15(17): 8692-8711, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37671945

RESUMEN

Colorectal cancer accounts for the second most common cancer-related lethality. Intestinal stem cells are responsible for enteric homeostasis maintenance that, once being transformed, become colorectal cancer stem cells. Arresting cancer stemness represents an innovative strategy for colorectal cancer management. Using intestinal stem cell organoids as the primary model, we screened common inflammatory cytokines to identify key players targeting cancer stemness. We also explored the downstream signaling that drives the functionalities of the identified cytokine through both experimental investigations and computational predictions. As the results, we identified IFNγ as the key cytokine capable of arresting intestinal stem cells via the IFNγ/IFNGR2/APC/TCF4/GPX4 axis, proposed its role in killing colorectal cancer stem cells via triggering GPX4-dependent ferroptosis, and demonstrated its synergistic anti-cancer effect with cold atmospheric plasma in killing colorectal cancer cells that is worthy to be experimentally validated.


Asunto(s)
Neoplasias Colorrectales , Ferroptosis , Neoplasias Primarias Secundarias , Humanos , Interferón gamma , Citocinas , Células Madre Neoplásicas , Factor de Transcripción 4
8.
Biomol Ther (Seoul) ; 31(5): 496-514, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37641880

RESUMEN

Cold atmospheric plasma (CAP), a redox modulation tool, is capable of inhibiting a wide spectrum of cancers and has thus been proposed as an emerging onco-therapy. However, with incremental successes consecutively reported on the anticancer efficacy of CAP, no consensus has been made on the types of tumours sensitive to CAP due to the different intrinsic characteristics of the cells and the heterogeneous design of CAP devices and their parameter configurations. These factors have substantially hindered the clinical use of CAP as an oncotherapy. It is thus imperative to clarify the tumour types responsive to CAP, the experimental models available for CAP-associated investigations, CAP administration strategies and the mechanisms by which CAP exerts its anticancer effects with the aim of identifying important yet less studied areas to accelerate the process of translating CAP into clinical use and fostering the field of plasma oncology.

9.
BMC Biol ; 21(1): 166, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542270

RESUMEN

BACKGROUND: The extracellular space between the cell wall and plasma membrane is a battlefield in plant-pathogen interactions. Within this space, the pathogen employs its secretome to attack the host in a variety of ways, including immunity manipulation. However, the role of the plant secretome is rarely studied for its role in disease resistance. RESULTS: Here, we examined the secretome of Verticillium wilt-resistant Gossypium hirsutum cultivar Zhongzhimian No.2 (ZZM2, encoding 95,327 predicted coding sequences) to determine its role in disease resistance against the wilt causal agent, Verticillium dahliae. Bioinformatics-driven analyses showed that the ZZM2 genome encodes 2085 secreted proteins and that these display disequilibrium in their distribution among the chromosomes. The cotton secretome displayed differences in the abundance of certain amino acid residues as compared to the remaining encoded proteins due to the localization of these putative proteins in the extracellular space. The secretome analysis revealed conservation for an allotetraploid genome, which nevertheless exhibited variation among orthologs and comparable unique genes between the two sub-genomes. Secretome annotation strongly suggested its involvement in extracellular stress responses (hydrolase activity, oxidoreductase activity, and extracellular region, etc.), thus contributing to resistance against the V. dahliae infection. Furthermore, the defense response genes (immunity marker NbHIN1, salicylic acid marker NbPR1, and jasmonic acid marker NbLOX4) were activated to varying degrees when Nicotina benthamiana leaves were agro-infiltrated with 28 randomly selected members, suggesting that the secretome plays an important role in the immunity response. Finally, gene silencing assays of 11 members from 13 selected candidates in ZZM2 displayed higher susceptibility to V. dahliae, suggesting that the secretome members confer the Verticillium wilt resistance in cotton. CONCLUSIONS: Our data demonstrate that the cotton secretome plays an important role in Verticillium wilt resistance, facilitating the development of the resistance gene markers and increasing the understanding of the mechanisms regulating disease resistance.


Asunto(s)
Ascomicetos , Verticillium , Gossypium/genética , Resistencia a la Enfermedad/genética , Secretoma , Verticillium/metabolismo , Enfermedades de las Plantas/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
Microbiol Spectr ; 11(4): e0108323, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37378525

RESUMEN

Verticillium dahliae is a soilborne fungal pathogen that causes disease on many economically important crops. Based on the resistance or susceptibility of differential cultivars in tomato, isolates of V. dahliae are divided into three races. Avirulence (avr) genes within the genomes of the three races have also been identified. However, the functional role of the avr gene in race 3 isolates of V. dahliae has not been characterized. In this study, bioinformatics analysis showed that VdR3e, a cysteine-rich secreted protein encoded by the gene characterizing race 3 in V. dahliae, was likely obtained by horizontal gene transfer from the fungal genus Bipolaris. We demonstrate that VdR3e causes cell death by triggering multiple defense responses. In addition, VdR3e localized at the periphery of the plant cell and triggered immunity depending on its subcellular localization and the cell membrane receptor BAK1. Furthermore, VdR3e is a virulence factor and shows differential pathogenicity in race 3-resistant and -susceptible hosts. These results suggest that VdR3e is a virulence factor that can also interact with BAK1 as a pathogen-associated molecular pattern (PAMP) to trigger immune responses. IMPORTANCE Based on the gene-for-gene model, research on the function of avirulence genes and resistance genes has had an unparalleled impact on breeding for resistance in most crops against individual pathogens. The soilborne fungal pathogen, Verticillium dahliae, is a major pathogen on many economically important crops. Currently, avr genes of the three races in V. dahliae have been identified, but the function of avr gene representing race 3 has not been described. We investigated the characteristics of VdR3e-mediated immunity and demonstrated that VdR3e acts as a PAMP to activate a variety of plant defense responses and induce plant cell death. We also demonstrated that the role of VdR3e in pathogenicity was host dependent. This is the first study to describe the immune and virulence functions of the avr gene from race 3 in V. dahliae, and we provide support for the identification of genes mediating resistance against race 3.


Asunto(s)
Ascomicetos , Verticillium , Virulencia/genética , Verticillium/genética , Inmunidad de la Planta , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Enfermedades de las Plantas/microbiología
11.
Front Microbiol ; 14: 1189354, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37333651

RESUMEN

To establish a safe, efficient, and simple biocontrol measure for gray mold disease caused by Botrytis cinerea, the basic characteristics and antifungal activity of KRS005 were studied from multiple aspects including morphological observation, multilocus sequence analysis and typing (MLSA-MLST), physical-biochemical assays, broad-spectrum inhibitory activities, control efficiency of gray mold, and determination of plant immunity. The strain KRS005, identified as Bacillus amyloliquefaciens, demonstrated broad-spectrum inhibitory activities against various pathogenic fungi by dual confrontation culture assays, of which the inhibition rate of B. cinerea was up to 90.3%. Notably, through the evaluation of control efficiency, it was found that KRS005 fermentation broth could effectively control the occurrence of tobacco leaves gray mold by determining the lesion diameter and biomass of B. cinerea on tobacco leaves still had a high control effect after dilution of 100 folds. Meanwhile, KRS005 fermentation broth had no impact on the mesophyll tissue of tobacco leaves. Further studies showed that plant defense-related genes involved in reactive oxygen species (ROS), salicylic acid (SA), and jasmonic acid (JA)-related signal pathways were significantly upregulated when tobacco leaves were sprayed with KRS005 cell-free supernatant. In addition, KRS005 could inhibit cell membrane damage and increase the permeability of B. cinerea. Overall, KRS005, as a promising biocontrol agent, would likely serve as an alternative to chemical fungicides to control gray mold.

12.
Int J Mol Sci ; 24(11)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37298354

RESUMEN

Verticillium wilt caused by Verticillium dahliae is a notorious soil-borne fungal disease and seriously threatens the yield of economic crops worldwide. During host infection, V. dahliae secretes many effectors that manipulate host immunity, among which small cysteine-rich proteins (SCPs) play an important role. However, the exact roles of many SCPs from V. dahliae are unknown and varied. In this study, we show that the small cysteine-rich protein VdSCP23 inhibits cell necrosis in Nicotiana benthamiana leaves, as well as the reactive oxygen species (ROS) burst, electrolyte leakage and the expression of defense-related genes. VdSCP23 is mainly localized in the plant cell plasma membrane and nucleus, but its inhibition of immune responses was independent of its nuclear localization. Site-directed mutagenesis and peptide truncation showed that the inhibition function of VdSCP23 was independent of cysteine residues but was dependent on the N-glycosylation sites and the integrity of VdSCP23 protein structure. Deletion of VdSCP23 did not affect the growth and development of mycelia or conidial production in V. dahliae. Unexpectedly, VdSCP23 deletion strains still maintained their virulence for N. benthamiana, Gossypium hirsutum and Arabidopsis thaliana seedlings. This study demonstrates an important role for VdSCP23 in the inhibition of plant immune responses; however, it is not required for normal growth or virulence in V. dahliae.


Asunto(s)
Ascomicetos , Verticillium , Cisteína/metabolismo , Ascomicetos/metabolismo , Enfermedades de las Plantas/microbiología , Gossypium/microbiología , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas
13.
Front Microbiol ; 14: 1130468, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065139

RESUMEN

Understanding how plant pathogenic fungi adapt to their hosts is of critical importance to securing optimal crop productivity. In response to pathogenic attack, plants produce reactive oxygen species (ROS) as part of a multipronged defense response. Pathogens, in turn, have evolved ROS scavenging mechanisms to undermine host defense. Thioredoxins (Trx) are highly conserved oxidoreductase enzymes with a dithiol-disulfide active site, and function as antioxidants to protect cells against free radicals, such as ROS. However, the roles of thioredoxins in Verticillium dahliae, an important vascular pathogen, are not clear. Through proteomics analyses, we identified a putative thioredoxin (VdTrx1) lacking a signal peptide. VdTrx1 was present in the exoproteome of V. dahliae cultured in the presence of host tissues, a finding that suggested that it plays a role in host-pathogen interactions. We constructed a VdTrx1 deletion mutant ΔVdTrx1 that exhibited significantly higher sensitivity to ROS stress, H2O2, and tert-butyl hydroperoxide (t-BOOH). In vivo assays by live-cell imaging and in vitro assays by western blotting revealed that while VdTrx1 lacking the signal peptide can be localized within V. dahliae cells, VdTrx1 can also be secreted unconventionally depending on VdVps36, a member of the ESCRT-II protein complex. The ΔVdTrx1 strain was unable to scavenge host-generated extracellular ROS fully during host invasion. Deletion of VdTrx1 resulted in higher intracellular ROS levels of V. dahliae mycelium, displayed impaired conidial production, and showed significantly reduced virulence on Gossypium hirsutum, and model plants, Arabidopsis thaliana and Nicotiana benthamiana. Thus, we conclude that VdTrx1 acts as a virulence factor in V. dahliae.

14.
Biol Res ; 56(1): 17, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37016436

RESUMEN

BACKGROUND: Spontaneous spheroid culture is a novel three-dimensional (3D) culture strategy for the rapid and efficient selection of progenitor cells. The objectives of this study are to investigate the pluripotency and differentiation capability of spontaneous spheroids from alveolar bone-derived mesenchymal stromal cells (AB-MSCs); compare the advantages of spontaneous spheroids to those of mechanical spheroids; and explore the mechanisms of stemness enhancement during spheroid formation from two-dimensional (2D) cultured cells. METHODS: AB-MSCs were isolated from the alveolar bones of C57BL/6 J mice. Spontaneous spheroids formed in low-adherence specific culture plates. The stemness, proliferation, and multi-differentiation capacities of spheroids and monolayer cultures were investigated by reverse transcription quantitative polymerase chain reaction (RT-qPCR), immunofluorescence, alkaline phosphatase (ALP) activity, and oil-red O staining. The pluripotency difference between the spontaneous and mechanical spheroids was analyzed using RT-qPCR. Hypoxia-inducible factor (HIFs) inhibition experiments were performed to explore the mechanisms of stemness maintenance in AB-MSC spheroids. RESULTS: AB-MSCs successfully formed spontaneous spheroids after 24 h. AB-MSC spheroids were positive for MSC markers and pluripotency markers (Oct4, KLF4, Sox2, and cMyc). Spheroids showed higher Ki67 expression and lower Caspase3 expression at 24 h. Under the corresponding conditions, the spheroids were successfully differentiated into osteogenic and adipogenic lineages. AB-MSC spheroids can induce neural-like cells after neurogenic differentiation. Higher expression of osteogenic markers, adipogenic markers, and neurogenic markers (NF-M, NeuN, and GFAP) was found in spheroids than in the monolayer. Spontaneous spheroids exhibited higher stemness than mechanical spheroids did. HIF-1α and HIF-2α were remarkably upregulated in spheroids. After HIF-1/2α-specific inhibition, spheroid formation was significantly reduced. Moreover, the expression of the pluripotency genes was suppressed. CONCLUSIONS: Spontaneous spheroids from AB-MSCs enhance stemness and pluripotency. HIF-1/2α plays an important role in the stemness regulation of spheroids. AB-MSC spheroids exhibit excellent multi-differentiation capability, which may be a potent therapy for craniomaxillofacial tissue regeneration.


Asunto(s)
Células Madre Mesenquimatosas , Esferoides Celulares , Animales , Ratones , Técnicas de Cultivo de Célula/métodos , Ratones Endogámicos C57BL , Células Cultivadas , Células Madre , Diferenciación Celular , Osteogénesis/genética , Hipoxia/metabolismo
15.
BMC Cancer ; 23(1): 376, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37098488

RESUMEN

BACKGROUND: Cancers harboring spliceosome mutations are highly sensitive to additional perturbations on the spliceosome that leads to the development of onco-therapeutics targeting the spliceosome and opens novel opportunities for managing aggressive tumors lacking effective treatment options such as triple negative breast cancers. Being the core spliceosome associated proteins, SNRPD1 and SNRPE have been both proposed as therapeutic targets for breast cancer management. Yet, their differences regarding their prognostic and therapeutic use as well as roles during carcinogenesis are largely unreported. METHODS: We conducted in silico analysis at gene expression and genetic levels to differentiate the clinical relevance of SNRPD1 and SNRPE, and explored their differential functionalities and molecular mechanistic associations with cancer in vitro. RESULTS: We showed that high SNRPD1 gene expression was prognostic of poor breast cancer survival whereas SNRPE was not. The SNRPD1 expression quantitative trait loci, rs6733100, was found independently prognostic of breast cancer survival using TCGA data. Silencing either SNRPD1 or SNRPE independently suppressed the growth of breast cancer cells, but decreased migration was only observed in SNRPD1-silenced cells. Knocking down SNRPD1 but not SNRPE triggers doxorubicin resistance in triple negative breast cancer cells. Gene enrichment and network analyses revealed the dynamic regulatory role of SNRPD1 on cell cycle and genome stability, and the preventive role of SNRPE against cancer stemness that may neutralize its promotive role on cancer cell proliferation. CONCLUSION: Our results differentiated the functionalities of SNRPD1 and SNRPE at both prognostic and therapeutic levels, and preliminarily explained the driving mechanism that requires additional explorations and validations.


Asunto(s)
Antraciclinas , Neoplasias de la Mama Triple Negativas , Humanos , Antraciclinas/farmacología , Antraciclinas/uso terapéutico , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/uso terapéutico , Mama/patología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Pronóstico , Resultado del Tratamiento , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
16.
Microbiol Spectr ; : e0480522, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36861984

RESUMEN

Pathogenic fungi are the main cause of yield loss and postharvest loss of crops. In recent years, some antifungal microorganisms have been exploited and applied to prevent and control pathogenic fungi. In this study, an antagonistic bacteria KRS027 isolated from the soil rhizosphere of a healthy cotton plant from an infected field was identified as Burkholderia gladioli by morphological identification, multilocus sequence analysis, and typing (MLSA-MLST) and physiobiochemical examinations. KRS027 showed broad spectrum antifungal activity against various phytopathogenic fungi by secreting soluble and volatile compounds. KRS027 also has the characteristics of plant growth promotion (PGP) including nitrogen fixation, phosphate, and potassium solubilization, production of siderophores, and various enzymes. KRS027 is not only proven safe by inoculation of tobacco leaves and hemolysis test but also could effectively protect tobacco and table grapes against gray mold disease caused by Botrytis cinerea. Furthermore, KRS027 can trigger plant immunity by inducing systemic resistance (ISR) activated by salicylic acid- (SA), jasmonic acid- (JA), and ethylene (ET)-dependent signaling pathways. The extracellular metabolites and volatile organic compounds (VOCs) of KRS027 affected the colony extension and hyphal development by downregulation of melanin biosynthesis and upregulation of vesicle transport, G protein subunit 1, mitochondrial oxidative phosphorylation, disturbance of autophagy process, and degrading the cell wall of B. cinerea. These results demonstrated that B. gladioli KRS027 would likely become a promising biocontrol and biofertilizer agent against fungal diseases, including B. cinerea, and would promote plant growth. IMPORTANCE Searching the economical, eco-friendly and efficient biological control measures is the key to protecting crops from pathogenic fungi. The species of Burkholderia genus are widespread in the natural environment, of which nonpathogenic members have been reported to have great potential for biological control agents and biofertilizers for agricultural application. Burkholderia gladioli strains, however, need more study and application in the control of pathogenic fungi, plant growth promotion, and induced systemic resistance (ISR). In this study, we found that a B. gladioli strain KRS027 has broad spectrum antifungal activity, especially in suppressing the incidence of gray mold disease caused by Botrytis cinerea, and can stimulate plant immunity response via ISR activated by salicylic acid- (SA), jasmonic acid- (JA), and ethylene (ET)-dependent signaling pathways. These results indicate that B. gladioli KRS027 may be a promising biocontrol and biofertilizer microorganism resource in agricultural applications.

17.
Mol Cancer ; 22(1): 60, 2023 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-36966334

RESUMEN

BACKGROUND: Fibroblast growth factors (FGFs) and their receptors (FGFRs) play a crucial role in cell fate and angiogenesis, with dysregulation of the signaling axis driving tumorigenesis. Therefore, many studies have targeted FGF/FGFR signaling for cancer therapy and several FGFR inhibitors have promising results in different tumors but treatment efficiency may still be improved. The clinical use of immune checkpoint blockade (ICB) has resulted in sustained remission for patients. MAIN: Although there is limited data linking FGFR inhibitors and immunotherapy, preclinical research suggest that FGF/FGFR signaling is involved in regulating the tumor microenvironment (TME) including immune cells, vasculogenesis, and epithelial-mesenchymal transition (EMT). This raises the possibility that ICB in combination with FGFR-tyrosine kinase inhibitors (FGFR-TKIs) may be feasible for treatment option for patients with dysregulated FGF/FGFR signaling. CONCLUSION: Here, we review the role of FGF/FGFR signaling in TME regulation and the potential mechanisms of FGFR-TKI in combination with ICB. In addition, we review clinical data surrounding ICB alone or in combination with FGFR-TKI for the treatment of FGFR-dysregulated tumors, highlighting that FGFR inhibitors may sensitize the response to ICB by impacting various stages of the "cancer-immune cycle".


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Microambiente Tumoral , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/uso terapéutico , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo
18.
Front Immunol ; 14: 1058627, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36923407

RESUMEN

Background: Despite great success, immunotherapy still faces many challenges in practical applications. It was previously found that family with sequence similarity 110 member A (FAM110A) participate in the regulation of the cell cycle and plays an oncogenic role in pancreatic cancer. However, the prognostic value of FAM110A in pan-cancer and its involvement in immune response remain unclear. Methods: The Human Protein Atlas (HPA) database was used to detect the expression of FAM110A in human normal tissues, the Tumor Immune Estimation Resource (TIMER) and TIMER 2.0 databases were used to explore the association of FAM110A expression with immune checkpoint genes and immune infiltration, and the Gene Set Cancer Analysis (GSCA) database was used to explore the correlation between FAM110A expression and copy number variations (CNV) and methylation. The LinkedOmics database was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Statistical analysis and visualization of data from the The Cancer Genome Atlas (TCGA) or the Genotype-Tissue Expression (GTEx) databases were performed using the R software (version 3.6.3). Clinical samples were validated using immunohistochemistry. Results: FAM110A expression was elevated in most tumor tissues compared with that in normal tissues. CNV and methylation were associated with abnormal FAM110A mRNA expression in tumor tissues. FAM110A affected prognosis and was associated with the expression of multiple immune checkpoint genes and abundance of tumor-infiltrating immune cells across multiple types of cancer, especially in liver hepatocellular carcinoma (LIHC). FAM110A-related genes were involved in multiple immune-related processes in LIHC. Conclusion: FAM110A participates in regulating the immune infiltration and affecting the prognosis of patients in multiple cancers, especially in LIHC. FAM110A may serve as a prognostic and immunological biomarker for human cancer.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Biomarcadores , Bases de Datos de Proteínas , Variaciones en el Número de Copia de ADN , Pronóstico
19.
Cancer Med ; 12(6): 7189-7206, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36762766

RESUMEN

With mounting preclinical and clinical evidences on the prominent roles of the tumor microenvironment (TME) played during carcinogenesis, the TME has been recognized and used as an important onco-therapeutic target during the past decade. Delineating our current knowledge on TME components and their functionalities can help us recognize novel onco-therapeutic opportunities and establish treatment modalities towards desirable anti-cancer outcome. By identifying and focusing on primary cellular components in the TME, that is, tumor-infiltrating lymphocytes, tumor-associated macrophages, cancer-associated fibroblasts and mesenchymal stem cells, we decomposed their primary functionalities during carcinogenesis, categorized current therapeutic approaches utilizing traits of these components, and forecasted possible benefits that cold atmospheric plasma, a redox modulating tool with selectivity against cancer cells, may convey by targeting the TME. Our insights may open a novel therapeutic avenue for cancer control taking advantages of redox homeostasis and immunostasis.


Asunto(s)
Fibroblastos Asociados al Cáncer , Células Madre Mesenquimatosas , Neoplasias , Humanos , Microambiente Tumoral , Neoplasias/tratamiento farmacológico , Carcinogénesis/patología , Células Madre Mesenquimatosas/patología
20.
Curr Cancer Drug Targets ; 23(6): 482-495, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36748213

RESUMEN

PURPOSE: The study aimed to assess the effect of p-ATR inhibitor VE-822 in the combination chemotherapy with cisplatin of head and neck squamous cell carcinoma and to explore the possible mechanism. METHODS: The DNA damage levels were determined by comet assay and western blot experiments in cisplatin-resistant and sensitive cell lines. The IC50 value changes after combination treatment with VE-822 in cisplatin sensitive and resistant cell lines were detected by the CCK-8 test. The effects of VE-822 combined with cisplatin on proliferation ability, colony formation ability, migration ability, cell apoptosis and cell cycle changes were observed in vitro. In vivo, the combination treatment effect was verified in the subcutaneous xenograft models of nude mice. Besides, the mechanism of VE-822 assisting cisplatin in chemotherapy was explored by comet assay, western blotting and immunohistochemical experiments. RESULTS: The increased expression of the p-ATR protein was related to the DNA damage repair pathway in head and neck squamous cell carcinoma cisplatin-resistant cells. VE-822 inhibited cell proliferation, colony formation and migration abilities and improved the cisplatin chemotherapeutic effects in subcutaneous xenograft models of nude mice by inhibiting the p-ATR expression and blocking DNA damage repair pathway. CONCLUSIONS: The p-ATR expression increased in head and neck squamous cell carcinoma cisplatinresistant cells. VE-822 significantly enhanced the therapeutic effect in cisplatin resistant head and neck squamous cell carcinoma by inhibiting p-ATR expression in vivo and in vitro.


Asunto(s)
Antineoplásicos , Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Animales , Ratones , Humanos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ratones Desnudos , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Apoptosis , Neoplasias de Cabeza y Cuello/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA