Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Intervalo de año de publicación
1.
Water Res ; 256: 121619, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38642538

RESUMEN

Tannic acid (TA) aided hydrothermal treatment (HT) can decrease effective HT temperatures for sludge deep dewatering by chelator protein, but faces notable and economic challenges including the failure to remove antibiotics and the limited protein binding capacity. Herein, hydrothermally activated TA (in situ TA + HT) was conducted to simultaneously improve sludge dewaterability and antibiotic (tetracycline (TC), oxytetracycline (OTC), norfloxacin (NOR), ofloxacin (OFL)) removal. Compared to traditional HT and HT + TA treatment, the in-situ TA + HT process could further strengthen the TA-aided HT efficacy in enhancing sludge and reducing the protein content in the filtrate simultaneously; in which the optimal HT temperature for the dewatering of the sludge was reduced from 180 °C to 140 °C. Furthermore, the total removal efficiency of target antibiotics was achieved at more than 71.0-94.7% for TC and OTC, and 72.0-84.8% for NOR and OFL. The highly reactive species (·OH) generation and the electron transfer efficiency from the hydrothermal-activated TA process were responsible for the elimination of antibiotics and promoted the hydrolyzation and mineralization of HMW protein in sludge during the HT process. Meanwhile, the degradation of HMW proteins and the destruction of the secondary structure of these proteins resulted in improved hydrophobicity and dewaterability of sludge. Hydrothermally activated TA induces covalent binding with the protein. As a result, hydrothermal-activated TA could promote the removal of antibiotics and proteinaceous compounds from the sludge samples, improving the hydrophobicity of sludge and releasing bound water from the sludge flocs during HT. Finally, the cost of hydrothermal-activated TA was 66.51% lower than that of thermal drying treatment. This study not only proposed an effective method to improve traditional HT for sludge thermal dry-free treatment, but also provided new information on the catalysis roles of polyphenols in the hydrothermal conversion of sludge.


Asunto(s)
Antibacterianos , Aguas del Alcantarillado , Taninos , Taninos/química , Aguas del Alcantarillado/química , Antibacterianos/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Polifenoles
2.
Sci Total Environ ; 922: 171339, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38428595

RESUMEN

Inappropriate sterilization strategies inhibit microalgal growth when culturing microalgae with anaerobic digestate. This study aimed to scientifically select a low-cost disinfection pretreatment of anaerobic digestate for large-scale microalgae cultivations. In this work, three different methods, including autoclaving, ultraviolet or NaClO treatments, were employed to sterilize the municipal anaerobic digestate. Scenedesmus quadricauda was then cultured in diluted liquid digestate for the simultaneous lipid production and nutrient removal. The results indicated that the growth of S. quadricauda was inhibited after NaClO treatment due to the residual free chlorine. The 15-min ultraviolet effectively mitigated microbial contamination and increasing nutrient availability, enhancing the electron transport of microalgal photosynthesis. After 6-days cultivation, the microalgal biomass concentration of the ultraviolet group was 1.09 g/L, comparable to that of the autoclaving group (1.15 g/L). High nutrient removal efficiency was observed: COD (93.30 %), NH4+-N (92.56 %), TN (85.82 %) and TP (95.12 %). Moreover, S. quadricauda outcompeted the indigenous microorganisms, contributing to its dominance in the culture system of ultraviolet group. The facultative anaerobe Comamonadaceae and aerobes Moraxellaceae, rather than strict anaerobe Paludibacteraceae and Bacteroidetes_vadinHA17, played vital roles in synergistic removal of contaminants by bacteria and algae. The potential competition for nitrogen and phosphorus by bacteria contributed to the ultraviolet group having the greatest lipid content (48.19 %). Therefore, this work suggested using 15-min ultraviolet treatment for anaerobic digestate in large-scale microalgae cultivation.


Asunto(s)
Microalgas , Scenedesmus , Rayos Ultravioleta , Anaerobiosis , Bacterias , Biomasa , Nitrógeno , Bacteroidetes , Lípidos
3.
Water Res ; 251: 121149, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38237462

RESUMEN

The development of efficient and low-consumption wastewater upgrading process is currently at the forefront of the wastewater treatment field. In this study, a novel wastewater treatment process based on powder carriers was proposed. Three systems, namely the activated sludge (AS) system, powder carrier (PC) system, and moving bed biofilm reactor (MBBR) system, were established and operated for over 140 days to treat real municipal wastewater. The characteristics and differences between the three systems were comprehensively investigated. The results suggested that the PC system exhibited notable advantages in nitrogen and phosphorus removal, especially under high influent load and low aeration conditions. The PC system, characterized by a higher nitrification rate compared to the MBBR system and a higher denitrification rate compared to the AS system, contributed to the stable nitrogen removal performance. The particle size of the zoogloea increased under the linkage of the powder carriers, and the mean size of micro-granules reached 170.88 µm. Large number of hydrophobic functional groups on sludge surface, coupled with increased protein content in EPS, further promoted sludge aggregation. Micro-granules formation improved settling performance and enhanced the abundance and activity of functional microbes. A significant enrichment in denitrifying bacteria and denitrifying phosphorus accumulating bacteria was observed in PC system. Up-regulation of the napA, narG, and nosZ genes was responsible for efficient nitrogen removal of the PC system. Moreover, a higher abundance in polyphosphate phosphotransferase (2.11 %) was found in PC system compared with AS and MBBR systems. The increase in the enzymes associated with poly-ß-hydroxybutyrate (PHB) synthesis metabolism in PC system provided the energy for denitrification and phosphorus removal processes.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Aguas del Alcantarillado/microbiología , Polvos , Eliminación de Residuos Líquidos/métodos , Nitrógeno/análisis , Fósforo/metabolismo , Biopelículas , Desnitrificación , Reactores Biológicos/microbiología , Nitrificación
4.
Sci Total Environ ; 899: 165696, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37482355

RESUMEN

Hydrolysis acidification (HA) is a promising method for wastewater treatment and resource recovery. However, the extended time required for bacterial reactivation after starvation or a change in living conditions often poses a challenge to the efficient operation of the system. Although the addition of zero-valent iron (ZVI) could enhance HA performance, its effects on sludge reactivation in the HA process are not fully understood. In this study, ZVI was employed to accelerate sludge reactivation and its involved genetic mechanisms were unveiled. The results demonstrated that ZVI addition activated the sludge within 35 days with stable HA performance. Sludge characteristics revealed that ZVI improved active biomass, enzyme activity (by 11.4 % âˆ¼ 26.7 %), ETS activity (by 566 %), and cell viability, with a higher concentration of MLVSS, live cells, more microbial byproducts in EPS, and relative abundance of HA bacteria (63.41 %). Moreover, metatranscriptome analysis showed that ZVI upregulated the expression of genes related to key enzymes in carbohydrate degradation metabolism, biosynthesis of electron transfer media such as heme and ubiquinone, and biosynthesis of vital cofactors like vitamin B12 and folate during microbial growth and metabolism. These findings suggest that ZVI enhanced electron transfer, bacterial growth, and metabolism, resulting in effective starch conversion and VFAs generation. Overall, these results deepen our understanding of the mechanism by which ZVI enhanced HA sludge reactivation, providing valuable information for addressing sludge starvation issues in HA systems.


Asunto(s)
Hierro , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos/métodos , Hidrólisis , Anaerobiosis , Bacterias , Concentración de Iones de Hidrógeno , Expresión Génica
5.
Chemosphere ; 337: 139353, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37414297

RESUMEN

This study provides a comparative investigation of phosphorus removal between anaerobic-anoxic-oxic (AAO) and high-concentration powder carrier bio-fluidized bed (HPB) in the same full-scale wastewater treatment plant. The results showed that the total phosphorus removal of HPB was 71.45%-96.71%. Compared with AAO, the total phosphorus removal of HPB can be increased by a maximum of 15.73%. The mechanisms of enhanced phosphorus removal by HPB include the followings. Biological phosphorus removal was significant. The anaerobic phosphorus release capacity of HPB was enhanced and polyphosphate (Poly-P) in the excess sludge of HPB was 1.5 times higher than that of AAO. The relative abundance of Candidatus Accumulibacter was 5 times higher than that of AAO, and oxidative phosphorylation and butanoate metabolism were enhanced. The analysis of phosphorus distribution showed that cyclone separation increased the chemical phosphorus precipitation (Chem-P) in the excess sludge by 16.96% to avoid accumulation in the biochemical tank. The phosphorus adsorbed by extracellular polymeric substance (EPS) in the recycled sludge was stripped, and the EPS bound-P in the excess sludge increased by 1.5 times. This study demonstrated the feasibility of HPB to improve the phosphorus removal efficiency for domestic wastewater.


Asunto(s)
Tormentas Ciclónicas , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Polvos , Fósforo/análisis , Metagenómica , Matriz Extracelular de Sustancias Poliméricas/química , Desnitrificación , Reactores Biológicos , Nitrógeno/análisis , Eliminación de Residuos Líquidos/métodos
6.
Sci Total Environ ; 877: 162784, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36906019

RESUMEN

The present study investigated the potential of diatomite addition in enhancing sludge settlement of two-stage PN/Anammox for real reject water treatment, with a focus on sludge settling velocity, nitrogen removal capacity, sludge morphological features, and microbial community changes. The study found that diatomite addition significantly improved the sludge settleability of the two-stage PN/A process, resulting in a decrease in sludge volume index (SVI) from 70 to 80 mL/g to about 20-30 mL/g for both PN and Anammox sludge, although the sludge-diatomite interaction differed between the two types of sludge. In the PN sludge, diatomite acted as a carrier, while in the Anammox sludge, it acted as micro-nuclei. The addition of diatomite also increased the biomass amounts in the PN reactor, with a 5-29 % improvement attributed to its role as a biofilm carrier. The effects of diatomite addition on sludge settleability were more prominent at high mixed liquor suspended solids (MLSS), where sludge characteristics were deteriorated. Furthermore, the settling rate of the experimental group consistently exceeded that of the blank group after diatomite addition, with a significant decrease in SV. The relative abundance of Anammox bacteria was improved, and sludge particle size decreased in the diatomite-added Anammox reactor. Diatomite was effectively retained in both reactors, with less loss observed for Anammox than PN due to its more tightly wrapped structure, resulting in a stronger sludge-diatomite interaction. Overall, the results of this study suggest that diatomite addition has potential in enhancing the settling properties and performance of two-stage PN/Anammox for real reject water treatment.


Asunto(s)
Compuestos de Amonio , Purificación del Agua , Aguas del Alcantarillado/microbiología , Oxidación Anaeróbica del Amoníaco , Reactores Biológicos/microbiología , Nitrógeno , Oxidación-Reducción , Desnitrificación
7.
Sci Total Environ ; 864: 161068, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36565887

RESUMEN

A large amount of household food waste (HFW) is produced yearly, resulting in environmental problems and financial burdens. Bio-production of lactic acid (LA), a high value-added platform chemical, from HFW by anaerobic fermentation is a promising way of resource recovery. However, the LA production yield from HFW is low. This paper compared several pretreatment methods (hydrothermal pretreatment, chemical pretreatment, and combined hydrothermal and chemical pretreatment) to improve LA production from HFW. The result showed that the combined pretreatment (alkali-thermal pretreatment at pH 10 and 120 °C) significantly increased the LA production than single hydrothermal and chemical pretreatment. The pretreatment process promoted the dissolution of organics, especially the polysaccharides and amino acids, and further influenced the LA production by Lactobacillus rhamnosus ATCC 7469. Among the amino acids, aspartic acid (Asp), threonine (Thr), glutamic acid (Glu), glycine (Gly), alanine (Ala), cystine (Cys), valine (Val), isoleucine (Ile), arginine (Arg), and proline (Pro) significantly correlated with LA concentration.


Asunto(s)
Aminoácidos , Eliminación de Residuos , Secuencia de Aminoácidos , Alimentos , Solubilidad , Tripsina , Polisacáridos
8.
Water Res ; 225: 119116, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36152440

RESUMEN

Identifying and understanding the potential sources delivering microplastics into the urban water environment is imperative for microplastic pollution control. However, how atmospheric deposition contributes to microplastic pollution in the urban water environment is unclear. Therefore, this study investigated the contribution of atmospheric deposition to microplastic pollution in urban waters based on the analysis of the atmospheric deposition characteristics in the urban area. The results showed that microplastic deposition fluxes during wet weather and dry weather varied from 1.1 × 103±0.06×103 to 3.5 × 103±0.3 × 103 particles/m2/day and 0.91×103±0.09×103 to 1.6 × 103±0.1 × 103 particles/m2/day, respectively. The microplastics deposition flux showed moderate to strong correlations to atmospheric particulate matter concentrations, especially the PM2.5 concentration (R2 = 0.76-0.93), suggesting the regularly monitored PM2.5 concentration might be served as an indicator for microplastics deposition flux estimation. The deposited microplastics were mainly transparent fragments with an average size of 51-67 µm. Polyethylene and polypropylene were the most abundant plastic polymer, followed by polyethylene terephthalate and polyamide. The comparison of microplastics collected during different weather conditions suggested that rain events could increase microplastics deposition fluxes when air quality conditions are similar. Particularly, rains promoted the deposition of fibrous microplastics as well as smaller microplastics. The estimated daily microplastics deposition in the whole city region suggested more microplastics were deposited in summer and winter. The total quantity of microplastics deposited in the urban environment could reach 1.7-12 times of those discharged from treated wastewater. Among them, 10% would directly deposit to urban waters in the studied city region, while the others may also enter the urban waters through runoff. The results of this study highlighted that the atmospheric microplastics deposition is an important source for microplastics, especially smaller ones, to enter the urban waters, which could not be ignored during microplastics pollution control.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos/análisis , Aguas Residuales/análisis , Polipropilenos/análisis , Monitoreo del Ambiente , Tereftalatos Polietilenos , Nylons , Material Particulado/análisis , Agua/análisis , Polietilenos , Contaminantes Químicos del Agua/análisis
9.
Bioresour Technol ; 360: 127623, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35850391

RESUMEN

In this study, the effects of multifunctional microbial inoculation on food waste composting based on the synergistic property between organic matter degradation and nitrogen fixation were investigated. The results showed that inoculation simultaneously strengthened organic matter degradation by 9.9% and improved the nitrogen content by 20.6% compared with that of the control group. Additionally, spectral analysis demonstrated that inoculation was conducive to the enhanced humification, which was supported by the improvement in polyphenol oxidase activity. Microbial analysis showed that most of the introduced microorganisms (Bacillus, Streptomyces, Saccharomonospora) successfully colonized, and stimulated the growth of other indigenous microorganisms (Enterobacter, Paenibacillus). Meanwhile, the change in microbial community structure was accompanied by the enhanced tricarboxylic acid cycle and amino acid metabolism. Furthermore, network analysis and structural equation model revealed that the enhanced cooperation of microorganisms, in which more carbon sources could be provided by cellulose decomposition for nitrogen fixation.


Asunto(s)
Compostaje , Microbiota , Eliminación de Residuos , Carbono/metabolismo , Alimentos , Estiércol , Nitrógeno/metabolismo , Fijación del Nitrógeno , Eliminación de Residuos/métodos , Suelo
10.
Water Res ; 215: 118190, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35278917

RESUMEN

Waste activated sludge (WAS) is an important source of non-renewable phosphorus (P) recovery. Given the factor that the occurrence states of phosphorus in WAS determines its recovery efficiency, the spatial distribution and chemical speciation of phosphorus were comprehensively and simultaneously analyzed by in-situ and step-by-step extraction methods for the first time. It was confirmed that the phosphorus in solid phase of WAS could be mainly divided into three parts: polyphosphate in cells, extracellular polymeric substances (EPS)-bound P, and phosphate precipitated with metals (P-precipitates) in extracellular inorganic minerals. Among these forms, EPS-bound P (mainly orthophosphate, Ortho-P) and P-precipitates (mainly Ca-P, Fe-P, Al-P, and Mg-P) were the major forms of phosphorus in WAS, accounting for 65%-82% of total phosphorus (TP). Owing to the acid solubility of P-precipitates, acid extraction could be a potentially effective means for phosphorus recovery. However, the co-solution of metals may hinder the phosphorus recovery and the EPS-bound P cannot be recovered by acid extraction. To enhance phosphorus release from EPS and reduce metal interference, a targeted clean extraction technology using acidic cation exchange resin (ACER) was also developed. The results showed that a low dosage ACER could effectively extract EPS-bound P and P-precipitates, and the content of phosphorus in the extract exceeded 50% of TP. Compared with acid extraction, the release efficiency of TP increased by 13%-23%, and the dissolved metal content decreased by more than 90% in the extract by ACER. This was attributed to the acidification and metal capture by ACER. Finally, more than 90% of Ortho-P in the extract was recovered as calcium phosphate, which alleviated the depletion of phosphorus resources.


Asunto(s)
Fósforo , Aguas del Alcantarillado , Resinas de Intercambio de Catión , Fosfatos , Fósforo/química , Polímeros , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos
11.
Adv Sci (Weinh) ; 9(11): e2103982, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35138033

RESUMEN

Currently, the incidence of acute liver injury (ALI) is increasing year by year, and infection with coronavirus disease 2019 (COVID-19) can also induce ALI, but there are still no targeted therapeutic drugs. ZnO-NiO particles is mainly used to clean up reactive oxygen species (ROS) in industrial wastewater, and it is insoluble in water. Its excellent properties are discovered and improved by adding shuttle-based bonds to make it more water-soluble. ZnO-NiO@COOH particles are synthetically applied to treat ALI. The p-n junction in ZnO-NiO@COOH increases the surface area and active sites, thereby creating large numbers of oxygen vacancies, which can quickly adsorb ROS. The content in tissues and serum levels of L-glutathione (GSH) and the GSH/oxidized GSH ratio are measured to assess the capacity of ZnO-NiO@COOH particles to absorb ROS. The ZnO-NiO@COOH particles significantly reduce the expression levels of inflammatory factors (i.e., IL-1, IL-6, and TNF-α), macrophage infiltration, and granulocyte activation. ZnO-NiO@COOH rapidly adsorb ROS in a short period of time to block the generation of inflammatory storms and gain time for the follow-up treatment of ALI, which has important clinical significance.


Asunto(s)
COVID-19 , Óxido de Zinc , Glutatión , Humanos , Hígado , Níquel/química , Especies Reactivas de Oxígeno/metabolismo , Agua , Óxido de Zinc/química
12.
Sci Total Environ ; 807(Pt 3): 151064, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34673056

RESUMEN

With the increasing demand for sustainable development, the recycling and utilization of wastes has received widespread attention. This study proposed a green method of using one waste, corncob ash, to boost microbial the production of hydrogen from another waste, waste activated sludge, during anaerobic fermentation. The corncob ash dosage and the fermentative hydrogen production was positively correlated, and the maximum production of hydrogen reached up to 46.8 ± 1.0 mL/g VS, which was about 3.5 times that of the control group without corncob ash dosage (17.0 ± 0.9 mL/g VS). Mechanistic studies found that corncob ash was beneficial to the solubilization, hydrolysis and acetogenesis processes involved in fermentative hydrogen production process. The microbial community analysis indicated that corncob ash enriched more hydrolytic microorganisms (e.g., Bacteroides sp. and Leptolinea sp.), and has less impact on acidifying microorganisms, compared to the control group. The strategy of using corncob ash to boost the production of hydrogen during anaerobic waste activated sludge fermentation proposed in this study might provide a new waste-control-waste paradigm, making sludge disposal and wastewater treatment more sustainable.


Asunto(s)
Aguas del Alcantarillado , Zea mays , Fermentación , Hidrógeno , Desarrollo Sostenible
13.
J Environ Sci (China) ; 111: 380-391, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34949367

RESUMEN

Anaerobic digestion and incineration are widely used sewage sludge (SS) treatment and disposal approaches to recovering energy from SS, but it is difficult to select a suitable technical process from the various technologies. In this study, life-cycle assessments were adopted to compare the energy- and greenhouse gas- (GHG) emission footprints of two sludge-to-energy systems. One system uses a combination of AD with incineration (the AI system), whereas the other was simplified by direct incineration (the DI system). Comparison between three SS feedstocks (VS/TS: 57.61 -73.1 ds.%) revealed that the AI system consistently outperformed the DI system. The results of sensitivity analyses showed that the energy and GHG emission performances were mainly affected by VS content of the SS, AD conversion efficiency, and the energy consumption of sludge drying. Furthermore, the energy and GHG emission credit of the two systems increased remarkably with the increase in the VS content of the SS. For the high-organic-content sludge (VS/TS: 55%-80%), the energy and GHG emission credit of the AI system increase with the increase of AD conversion efficiency. However, for the low organic content sludge (VS/TS: 30%-55%), it has the opposite effect. In terms of energy efficiency and GHG performance, the AI system is a good choice for the treatment of high-organic-content sludge (VS/TS>55%), but DI shows superiority over AI when dealing with low organic content sludge (VS/TS<55%).


Asunto(s)
Gases de Efecto Invernadero , Aguas del Alcantarillado , Desecación , Efecto Invernadero , Incineración
14.
Water Res ; 194: 116909, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33609905

RESUMEN

In this work, a rhamnolipid (RL) pretreatment technology was proposed to promote methane production from two-phase anaerobic digestion of waste activated sludge. In the first phase (i.e., acidogenic phase), the WAS hydrolysis and acidogenesis were significantly enhanced after RL pretreatment for 4 day, under which the concentration of soluble protein and the short-chain fatty acids (SCFA) in the presence of RL at 0.04 g/g TSS was respectively 2.50 and 5.02 times higher than that without RL pretreatment. However, methane production was inhibited in the presence of RL. In the second phase (i.e., methanogenic phase), batch biochemical methane potential tests suggested that the addition of RL is effective in promoting anaerobic methane production. With an increase of RL dosage from 0 to 0.04 g/g TSS, the cumulative methane yield increased from 100.42 ± 3.01 to 168.90 ± 5.42 mL. Although the added RL could be utilized to produce methane, it was not the major contributor to the enhancement of methane yield. Further analysis revealed that total cumulative yield from the entire two-phase anaerobic digestion (sum of the yield of the acidogenic phase and methanogenic phase) increased from 113.42 ± 3.56 to 164.18 ± 5.20 mL when RL dosage increased from 0 to 0.03 g/g TSS, indicating that the addition of RL induced positive effect on the methane production of the entire two-phase anaerobic digestion. The enzyme activity analysis showed that although higher dosages of RL still inhibited the microorganisms related to methanogenesis to some extends in the methanogenic phase, the inhibitory effect was significantly weakened compared to the acidogenic phase. Microbial analysis revealed that RL reduced the abundance of Candidatus_Methanofastidiosum sp. while increased the abundance of Methanosaeta sp., causing the major methanogenesis pathway to change from hydrogenotrophic to aceticlastic. Moreover, the community of hydrolytic microbes and acidogens was shifted in the direction that is conducive to hydrolysis-acidogenesis. The findings reported not only expand the application field of RL, but also may provide supports for sustainable operation of wastewater treatment plants (WWTPs).


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Anaerobiosis , Reactores Biológicos , Glucolípidos , Metano
15.
Water Res ; 190: 116784, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33387953

RESUMEN

Due to the environmental risks caused by microplastics, understanding the sources and characteristics of microplastics and cutting off their routes into the environment are crucial. However, so far, studies on microplastics in the landfill leachate system (a major pathway of microplastics into the environment) are still limited, especially for tiny particles <50 µm that might have higher risks to the environment. This study investigated the microplastics in landfill leachate and in leachate treatment works, with a size detection limit down to 10 µm. The results showed that the microplastics particle and mass concentrations in the untreated leachate were 235.4 ± 17.1 item/L and 11.4 ± 0.8 µg/L, respectively, with tiny particles (<50 µm) accounting for over 50%. Overall, 27 polymeric materials were detected in leachate samples, with polyethylene and polypropylene being the most abundant in the untreated leachate. The neutral buoyancy of microplastics (average density: 0.94 g/cm3), together with irregular shapes, suggested they may be difficult to be removed by sedimentation. Further exploring the fate of microplastics in leachate treatment works showed that the membrane treatment effectively reduced microplastics loading to 0.14% for particle and 0.01% for mass, but the average particle density rose. The differences in polymeric materials distribution at different sampling locations and the presence of membrane-related polymer in membrane treatment effluent suggested tiny microplastics could be generated and released from membrane systems. Moreover, this study discovered that the sludge dewatering liquor could contain a high amount of microplastics, and the estimated particle loading was about 3.6 times higher than that in dewatered sludge. This suggested a new approach to microplastics mitigation through separating microplastics from the sludge dewatering liquor before its recirculation.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos , Aguas del Alcantarillado , Contaminantes Químicos del Agua/análisis
16.
Bioresour Technol ; 322: 124553, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33359566

RESUMEN

A novel composite CaO2 bead was prepared to improve total short-chain fatty acids (TSCFAs) production and phosphorus (P) recovery from iron-rich waste activated sludge (WAS) during ambient anaerobic fermentation. Results showed that CaO2 mass percentage of 5% and CaCl2:nylon66 = 1:1 (mass ratio) were the optimal prescription for the preparation of CaO2 beads with porous structure, loose morphology, and sustained-release of CaO2. The highest TSCFAs production (356 mg/g VSS) was observed and about 9% of P in sludge could be recovered on beads. The decrease of Fe-phosphate and Fe-oxides in the sludge were due to different mechanisms. Microbial community analyses showed that CaO2 beads effectively enriched dissimilatory iron-reducing bacteria (DIRB) and promoted iron-reduction related genes. After fermentation, the P-rich beads are easy to separate from sludge for further P recovery, and the supernatant carrying abundant acetate and Fe2+ can be returned to the wastewater treatment line to improve nutrient removal.


Asunto(s)
Fósforo , Aguas del Alcantarillado , Anaerobiosis , Ácidos Grasos Volátiles , Fermentación , Hierro
17.
Water Res ; 171: 115379, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31869692

RESUMEN

Sewage sludge is a primary pathway for microplastics (MPs) entering into terrestrial ecosystems. However, a standardized method to analyze MP in sludge is lacking due to its high organic matter. This study investigated the extraction efficiency of six MPs in five solid matrices, i.e. sewage sludge, cattle manure, soil, sediment and silicon dioxide. Results show lower extraction efficiency of 87.2% for MPs in sludge compared with that in other matrices, especially polyethylene terephthalate (PET) (only 27.8%). The possible reason was that the presence of extracellular polymeric substances within the sludge hinders the MPs to float. Therefore, five protocols, i.e. hydrogen peroxide (H2O2), Fenton, nitric acid (HNO3), hydrochloric acid (HCl) and sodium hydroxide (NaOH) were used to pretreat the sludge and optimize the MP extraction. The sludge pretreated by H2O2, Fenton and 1 M of acids had higher MP extraction efficiency than the raw sludge due to higher extraction of the PET. The MP extraction efficiency in the sludge first increased, and subsequently decreased with the soluble chemical oxygen demand (SCOD) content, implying that moderate dissolution of sludge organic matter is beneficial to the MP extraction. Quantitative analysis of the changes in the MP physicochemical characteristics after the pretreatments indicated that polyamide (PA) and PET are not resistant to acid and alkali treatment, respectively. Principal component analysis shows that the effect of pretreatments on the MPs follows a decreasing sequence: alkali > high concentration of acids > low concentration of acids > H2O2 and Fenton. Additionally, the susceptibility of the MPs to the pretreatments follows a decreasing sequence: PET, PA and polymethyl methacrylate (PMMA) > polystyrene (PS) > polyethylene (PE) and polypropylene (PP). The findings supply novel insights into the effect of chemical pretreatments on MP extraction in sewage sludge.


Asunto(s)
Plásticos , Aguas del Alcantarillado , Animales , Bovinos , Ecosistema , Peróxido de Hidrógeno , Microplásticos
18.
Chemosphere ; 232: 45-53, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31152902

RESUMEN

Aerobic digestion followed by dewatering is a widely applied method for sludge stabilization and reduction in decentralized wastewater treatment plants. It is important to enhance the sludge dewaterability of the aerobically digested sludge due to its considerable impact on cost of sludge disposal and management. In this study, an innovative technique is developed for improving the dewaterability of aerobically digested sludge by combined conditioning with persulfate (PS) and zero valent iron (ZVI). The results demonstrated that the dewaterability of aerobically digested sludge could be significantly enhanced with the PS and ZVI dosage in the range of 0-0.5 g/gTS and 0-0.4 g/gTS, respectively. The highest improvement was achieved at 0.05 g ZVI/g TS with 0.1 g PS/g TS, and the capillary suction time was reduced by ∼80%. The extracellular polymeric substances (EPS) characterization revealed that the combined PS-ZVI treatment could largely reduce proteins, polysaccharides and humic acids-like compounds in the tightly bounded EPS of the aerobically digested sludge, leading to bound water releasing from sludge flocs. The recovery of the ZVI particles could reach around 45%-80% after the treatment, further proved the sustainability of the approach. The proposed PS-ZVI conditioning would not have significant impact on the final choice of sludge disposal and the mainstream wastewater treatment. However, plant-scale test are still required for better assessing the proposed technique.


Asunto(s)
Hierro/química , Sulfatos/química , Eliminación de Residuos Líquidos , Oxidación-Reducción , Aguas del Alcantarillado , Aguas Residuales , Agua
19.
Water Res ; 157: 228-237, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30954698

RESUMEN

Microplastics (MPs) as new pollutants of environmental concern have been widely detected in sewage sludge, and may act as significant vectors for metal pollutants due to their adsorption property. Our findings show that Cd, Pb, and Co, but not Ni, contents in sewage sludge are lower than that of corresponding metal irons adsorbed on sludge-based MPs, indicating that the MPs accumulate such metal pollutants as Cd in the sludge samples. In contrast to virgin MPs, sludge-based MPs are one order of magnitude higher adsorption capacity for Cd, which reaches up to 2.523 mg g-1, implying that there is a considerable enhancement in adsorption potential of the MPs for metals after the wastewater treatment process. SEM analysis shows that sludge-based MPs have rougher and more porous surface than virgin MPs, and FTIR spectra reveal that functional groups such as CO and OH are found on sludge-based MPs. Further, two-dimensional FTIR correlation spectroscopy indicates that CO and NH functional groups play a vital role in the process that sludge-based MPs adsorb Cd, which are not found in virgin MPs. The results imply that increased adsorption potentials of the sludge-based MPs to Cd are attributed to changes in the MP physicochemical properties during wastewater treatment process. In addition, such factors as pH value, and sludge inorganic and organic components also have an effect on the MP adsorption to Cd. Principal component analysis shows that the MPs could be divided into three categories, i.e. polyamide, rubbery MPs (polyethylene and polypropylene) and glassy MPs (polyvinyl chloride and polystyrene). Their adsorption potentials to Cd follow the decreasing order: polyamide > rubbery MPs > glassy MPs. In summary, these findings indicate that MPs may exert an important influence on fate and transport of metal pollutants during sewage sludge treatment process, which deserves to be further concerned.


Asunto(s)
Contaminantes Ambientales , Aguas del Alcantarillado , Adsorción , Metales , Plásticos , Aguas Residuales
20.
Environ Sci Technol ; 52(23): 13925-13934, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30407796

RESUMEN

Novel, efficient bioadsorbent sodium alginate/graphene/l-cysteine (SA/GR/l-Cys) beads were prepared and used for magnetic field (MF)-assisted adsorption of pollutants. SA/GR/l-Cys has excellent mechanical properties, with a breaking stress of 3.5 MPa at 79.8%, an elastic modulus of 5.0 MPa, low swelling properties (average swelling ratio <300%), and good adsorption properties toward organic pollutants and heavy metal ions. A rotating magnetic field (RMF) was shown to have a better influence than a static magnetic field (SMF) on adsorption, with enhanced adsorption capacities 5-fold greater than those of the SMF. We investigated the different adsorption mechanisms of model contaminants through Fourier transform infrared spectroscopy, ζ potential, and X-ray photoelectrons spectroscopy. Formation of new hydrogen bonds, change in ζ potential, and acceleration in chemical reactions strongly influenced the adsorption process under the RMF. In fixed-bed column adsorption, the breakthrough time for column adsorption increased, and the adsorption capacity improved by 30.66%. The costs and practical applications of SA/GR/l-Cys under RMF were also analyzed. This work demonstrated that SA/GR/l-Cys could serve as a promising adsorbent for water pollutants under RMF exposure and could be used in practical applications.


Asunto(s)
Contaminantes Ambientales , Grafito , Contaminantes Químicos del Agua , Adsorción , Alginatos , Cisteína , Campos Magnéticos , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA