Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Intervalo de año de publicación
1.
Bioessays ; 46(6): e2300221, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38644621

RESUMEN

Cancer is most commonly viewed as resulting from somatic mutations enhancing proliferation and invasion. Some hypotheses further propose that these new capacities reveal a breakdown of multicellularity allowing cancer cells to escape proliferation and cooperation control mechanisms that were implemented during evolution of multicellularity. Here we critically review one such hypothesis, named "atavism," which puts forward the idea that cancer results from the re-expression of normally repressed genes forming a program, or toolbox, inherited from unicellular or simple multicellular ancestors. This hypothesis places cancer in an interesting evolutionary perspective that has not been widely explored and deserves attention. Thinking about cancer within an evolutionary framework, especially the major transitions to multicellularity, offers particularly promising perspectives. It is therefore of the utmost important to analyze why one approach that tries to achieve this aim, the atavism hypothesis, has not so far emerged as a major theory on cancer. We outline the features of the atavism hypothesis that, would benefit from clarification and, if possible, unification.


Asunto(s)
Neoplasias , Neoplasias/genética , Neoplasias/patología , Humanos , Animales , Evolución Biológica , Mutación , Proliferación Celular/genética
2.
Biol Rev Camb Philos Soc ; 98(5): 1668-1686, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37157910

RESUMEN

Cancers rely on multiple, heterogeneous processes at different scales, pertaining to many biomedical fields. Therefore, understanding cancer is necessarily an interdisciplinary task that requires placing specialised experimental and clinical research into a broader conceptual, theoretical, and methodological framework. Without such a framework, oncology will collect piecemeal results, with scant dialogue between the different scientific communities studying cancer. We argue that one important way forward in service of a more successful dialogue is through greater integration of applied sciences (experimental and clinical) with conceptual and theoretical approaches, informed by philosophical methods. By way of illustration, we explore six central themes: (i) the role of mutations in cancer; (ii) the clonal evolution of cancer cells; (iii) the relationship between cancer and multicellularity; (iv) the tumour microenvironment; (v) the immune system; and (vi) stem cells. In each case, we examine open questions in the scientific literature through a philosophical methodology and show the benefit of such a synergy for the scientific and medical understanding of cancer.


Asunto(s)
Neoplasias , Filosofía , Investigación , Estudios Interdisciplinarios
3.
Elife ; 82019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30860478

RESUMEN

Metabolism is a highly integrated process resulting in energy and biomass production. While individual metabolic routes are well characterized, the mechanisms ensuring crosstalk between pathways are poorly described, although they are crucial for homeostasis. Here, we establish a co-regulation of purine and pyridine metabolism in response to external adenine through two separable mechanisms. First, adenine depletion promotes transcriptional upregulation of the de novo NAD+ biosynthesis genes by a mechanism requiring the key-purine intermediates ZMP/SZMP and the Bas1/Pho2 transcription factors. Second, adenine supplementation favors the pyridine salvage route resulting in an ATP-dependent increase of intracellular NAD+. This control operates at the level of the nicotinic acid mononucleotide adenylyl-transferase Nma1 and can be bypassed by overexpressing this enzyme. Therefore, in yeast, pyridine metabolism is under the dual control of ZMP/SZMP and ATP, revealing a much wider regulatory role for these intermediate metabolites in an integrated biosynthesis network.


Asunto(s)
Proteínas Fúngicas/metabolismo , Regulación Neoplásica de la Expresión Génica , NAD/biosíntesis , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Purinas/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenina/química , Adenosina Trifosfato/química , Biomasa , Cromatografía Liquida , Genotipo , Proteínas de Homeodominio/metabolismo , Homeostasis , Niacina/química , Nicotinamida-Nucleótido Adenililtransferasa/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
4.
Neoplasia ; 20(6): 555-562, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29730476

RESUMEN

AICAR (Acadesine) is a pharmacological precursor of purine nucleotide biosynthesis with anti-tumoral properties. Although recognized as an AMP mimetic activator of the protein kinase AMPK, the AICAR monophosphate derivative ZMP was also shown to mediate AMPK-independent effects. In order to unveil these AMPK-independent functions, we performed a transcriptomic analysis in AMPKα1/α2 double knockout murine embryonic cells. Kinetic analysis of the cellular response to AICAR revealed the up-regulation of the large tumor suppressor kinases (Lats) 1 and 2 transcripts, followed by the repression of numerous genes downstream of the transcriptional regulators Yap1 and Taz. This transcriptional signature, together with the observation of increased levels in phosphorylation of Lats1 and Yap1 proteins, suggested that the Hippo signaling pathway was activated by AICAR. This effect was observed in both fibroblasts and epithelial cells. Knockdown of Lats1/2 prevented the cytoplasmic delocalization of Yap1/Taz proteins in response to AICAR and conferred a higher resistance to the drug. These results indicate that activation of the most downstream steps of the Hippo cascade participates to the antiproliferative effects of AICAR.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Aminoimidazol Carboxamida/análogos & derivados , Proliferación Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Ribonucleósidos/farmacología , Proteínas Supresoras de Tumor/genética , Aminoimidazol Carboxamida/farmacología , Animales , Antineoplásicos/farmacología , Proliferación Celular/genética , Células Cultivadas , Células Epiteliales/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Humanos , Ratones , Ratones Noqueados , Fosfoproteínas/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción/genética , Transcripción Genética/efectos de los fármacos , Transcripción Genética/genética , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
5.
Genetics ; 204(4): 1447-1460, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27707786

RESUMEN

Identifying synthetic lethal interactions has emerged as a promising new therapeutic approach aimed at targeting cancer cells directly. Here, we used the yeast Saccharomyces cerevisiae as a simple eukaryotic model to screen for mutations resulting in a synthetic lethality with 5-amino-4-imidazole carboxamide ribonucleoside (AICAR) treatment. Indeed, AICAR has been reported to inhibit the proliferation of multiple cancer cell lines. Here, we found that loss of several histone-modifying enzymes, including Bre1 (histone H2B ubiquitination) and Set1 (histone H3 lysine 4 methylation), greatly enhanced AICAR inhibition on growth via the combined effects of both the drug and mutations on G1 cyclins. Our results point to AICAR impacting on Cln3 subcellular localization and at the Cln1 protein level, while the bre1 or set1 deletion affected CLN1 and CLN2 expression. As a consequence, AICAR and bre1/set1 deletions jointly affected all three G1 cyclins (Cln1, Cln2, and Cln3), leading to a condition known to result in synthetic lethality. Significantly, these chemo-genetic synthetic interactions were conserved in human HCT116 cells. Indeed, knock-down of RNF40, ASH2L, and KMT2D/MLL2 induced a highly significant increase in AICAR sensitivity. Given that KMT2D/MLL2 is mutated at high frequency in a variety of cancers, this synthetic lethal interaction has an interesting therapeutic potential.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Antineoplásicos/farmacología , Evolución Molecular , Histonas/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Ribonucleótidos/farmacología , Saccharomyces cerevisiae/genética , Aminoimidazol Carboxamida/farmacología , Ciclinas/metabolismo , Proteínas de Unión al ADN/metabolismo , Células HCT116 , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Proteínas de Neoplasias/metabolismo , Unión Proteica/efectos de los fármacos , Procesamiento Proteico-Postraduccional/genética , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo , Tripeptidil Peptidasa 1
6.
J Biol Chem ; 289(24): 16844-54, 2014 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-24778186

RESUMEN

5-Aminoimidazole-4-carboxamide-1-ß-d-ribofuranoside (AICAr) is the precursor of the active monophosphate form (AICAR), a small molecule with potent anti-proliferative and low energy mimetic properties. The molecular bases for AICAR toxicity at the cellular level are poorly understood. Here, we report the isolation and characterization of several yeast AICAr-hypersensitive mutants. Identification of the cognate genes allowed us to establish that thiamine transporters Thi7 and Thi72 can efficiently take up AICAr under conditions where they are overexpressed. We establish that, under standard growth conditions, Nrt1, the nicotinamide riboside carrier, is the major AICAr transporter in yeast. A study of AICAR accumulation in human cells revealed substantial disparities among cell lines and confirmed that AICAr enters cells via purine nucleoside transporters. Together, our results point to significant differences between yeast and human cells for both AICAr uptake and AICAR accumulation.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Proteínas de Transporte de Membrana/metabolismo , Ribonucleótidos/farmacología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Aminoimidazol Carboxamida/farmacología , Animales , Línea Celular , Línea Celular Tumoral , Humanos , Proteínas de Transporte de Membrana/genética , Ratones , Mutación , Proteínas de Transporte de Nucleósidos/genética , Proteínas de Transporte de Nucleósidos/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Tiamina/metabolismo
7.
Nucleic Acids Res ; 40(12): 5271-82, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22379133

RESUMEN

Transposable elements play a fundamental role in genome evolution. It is proposed that their mobility, activated under stress, induces mutations that could confer advantages to the host organism. Transcription of the Ty1 LTR-retrotransposon of Saccharomyces cerevisiae is activated in response to a severe deficiency in adenylic nucleotides. Here, we show that Ty2 and Ty3 are also stimulated under these stress conditions, revealing the simultaneous activation of three active Ty retrotransposon families. We demonstrate that Ty1 activation in response to adenylic nucleotide depletion requires the DNA-binding transcription factor Tye7. Ty1 is transcribed in both sense and antisense directions. We identify three Tye7 potential binding sites in the region of Ty1 DNA sequence where antisense transcription starts. We show that Tye7 binds to Ty1 DNA and regulates Ty1 antisense transcription. Altogether, our data suggest that, in response to adenylic nucleotide reduction, TYE7 is induced and activates Ty1 mRNA transcription, possibly by controlling Ty1 antisense transcription. We also provide the first evidence that Ty1 antisense transcription can be regulated by environmental stress conditions, pointing to a new level of control of Ty1 activity by stress, as Ty1 antisense RNAs play an important role in regulating Ty1 mobility at both the transcriptional and post-transcriptional stages.


Asunto(s)
Adenina/metabolismo , Regulación Fúngica de la Expresión Génica , ARN sin Sentido/biosíntesis , Retroelementos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transactivadores/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Eliminación de Gen , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Estrés Fisiológico/genética , Transactivadores/genética , Activación Transcripcional , Transcriptoma
8.
J Biol Chem ; 286(35): 30994-31002, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21757731

RESUMEN

5-Amino-4-imidazolecarboxamide ribonucleotide 5'-phosphate (AICAR) is a monophosphate metabolic intermediate of the de novo purine synthesis pathway that has highly promising metabolic and antiproliferative properties. Yeast mutants unable to metabolize AICAR are auxotroph for histidine. A screening for suppressors of this phenotype identified recessive and dominant mutants that result in lowering the intracellular AICAR concentration. The recessive mutants affect the adenosine kinase, which is shown here to catalyze the phosphorylation of AICAR riboside in yeast. The dominant mutants strongly enhance the capacity of the alkaline phosphatase Pho13 to dephosphorylate 5-amino-4-imidazole N-succinocarboxamide ribonucleotide 5'-phosphate(SAICAR) into its non-toxic riboside form. By combining these mutants with transcriptomics and metabolomics analyses, we establish that in yeast responses to AICAR and SAICAR are clearly linked to the concentration of the monophosphate forms, whereas the derived nucleoside moieties have no effect even at high intracellular concentration. Finally, we show that AICAR/SAICAR concentrations vary under physiological conditions known to modulate transcription of the purine and phosphate pathway genes.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Genes Fúngicos , Mutación , Purinas/química , Ribonucleótidos/genética , Fosfatasa Alcalina/metabolismo , Catálisis , Cromatografía Liquida/métodos , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Dominantes , Genes Recesivos , Modelos Químicos , Saccharomyces cerevisiae/genética , Especificidad de la Especie , Transcripción Genética
9.
J Cell Biol ; 192(6): 949-57, 2011 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-21402786

RESUMEN

Quiescence is defined as a temporary arrest of proliferation, yet it likely encompasses various cellular situations. Our knowledge about this widespread cellular state remains limited. In particular, little is known about the molecular determinants that orchestrate quiescence establishment and exit. Here we show that upon carbon source exhaustion, budding yeast can enter quiescence from all cell cycle phases. Moreover, using cellular structures that are candidate markers for quiescence, we found that the first steps of quiescence exit can be triggered independently of cell growth and proliferation by the sole addition of glucose in both Saccharomyces cerevisiae and Schizosaccharomyces pombe. Importantly, glucose needs to be internalized and catabolized all the way down to glycolysis to mobilize quiescent cell specific structures, but, strikingly, ATP replenishment is apparently not the key signal. Altogether, these findings strongly suggest that quiescence entry and exit primarily rely on cellular metabolic status and can be uncoupled from the cell cycle.


Asunto(s)
Ciclo Celular/fisiología , Metabolismo Energético , Adenosina Trifosfato/metabolismo , Proliferación Celular , Glucosa/metabolismo , Saccharomyces cerevisiae/fisiología , Schizosaccharomyces/fisiología , Transducción de Señal/fisiología
10.
J Biol Chem ; 285(3): 1733-42, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19897478

RESUMEN

Mitochondrial biogenesis is a complex process. It necessitates the participation of both the nuclear and the mitochondrial genomes. This process is highly regulated, and mitochondrial content within a cell varies according to energy demand. In the yeast Saccharomyces cerevisiae, the cAMP pathway is involved in the regulation of mitochondrial biogenesis. An overactivation of this pathway leads to an increase in mitochondrial enzymatic content. Of the three yeast cAMP protein kinases, we have previously shown that Tpk3p is the one involved in the regulation of mitochondrial biogenesis. In this paper, we investigated the molecular mechanisms that govern this process. We show that in the absence of Tpk3p, mitochondria produce large amounts of reactive oxygen species that signal to the HAP2/3/4/5 nuclear transcription factors involved in mitochondrial biogenesis. We establish that an increase in mitochondrial reactive oxygen species production down-regulates mitochondrial biogenesis. It is the first time that a redox sensitivity of the transcription factors involved in yeast mitochondrial biogenesis is shown. Such a process could be seen as a mitochondria quality control process.


Asunto(s)
Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , AMP Cíclico/metabolismo , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , Mitocondrias/enzimología , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo
11.
Genetics ; 183(2): 529-38, 1SI-7SI, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19635936

RESUMEN

Coordinating homeostasis of multiple metabolites is a major task for living organisms, and complex interconversion pathways contribute to achieving the proper balance of metabolites. AMP deaminase (AMPD) is such an interconversion enzyme that allows IMP synthesis from AMP. In this article, we show that, under specific conditions, lack of AMPD activity impairs growth. Under these conditions, we found that the intracellular guanylic nucleotide pool was severely affected. In vivo studies of two AMPD homologs, Yjl070p and Ybr284p, indicate that these proteins have no detectable AMP, adenosine, or adenine deaminase activity; we show that overexpression of YJL070c instead mimics a loss of AMPD function. Expression of the yeast transcriptome was monitored in a AMPD-deficient mutant in a strain overexpressing YJL070c and in cells treated with the immunosuppressive drug mycophenolic acid, three conditions that lead to severe depletion of the guanylic nucleotide pool. These three conditions resulted in the up- or downregulation of multiple transcripts, 244 of which are common to at least two conditions and 71 to all three conditions. These transcriptome results, combined with specific mutant analysis, point to threonine metabolism as exquisitely sensitive to the purine nucleotide balance.


Asunto(s)
AMP Desaminasa/metabolismo , Nucleótidos de Purina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , AMP Desaminasa/genética , Vías Biosintéticas/efectos de los fármacos , División Celular/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica/genética , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Inosina Monofosfato/biosíntesis , Inosina Monofosfato/metabolismo , Mutación , Ácido Micofenólico/farmacología , Fenotipo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Treonina/metabolismo
12.
Mol Pharmacol ; 74(4): 1092-100, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18612078

RESUMEN

We found previously that inactivation of the FCY2 gene, encoding a purine-cytosine permease, or the HPT1 gene, encoding the hypoxanthine guanine phosphoribosyl transferase, enhances cisplatin resistance in yeast cells. Here, we report that in addition to fcy2Delta and hpt1Delta mutants in the salvage pathway of purine nucleotide biosynthesis, mutants in the de novo pathway that disable the feedback inhibition of AMP and GMP biosynthesis also enhanced cisplatin resistance. An activity-enhancing mutant of the ADE4 gene, which constitutively synthesizes AMP and excretes hypoxanthine, and a GMP kinase mutant (guk1), which accumulates GMP and feedback inhibits Hpt1 function, both enhanced resistance to cisplatin. In addition, overexpression of the ADE4 gene in wild-type cells, which increases de novo synthesis of purine nucleotides, also resulted in elevated cisplatin resistance. Cisplatin cytotoxicity in wild-type cells was abolished by low concentration of extracellular purines (adenine, hypoxanthine, and guanine) but not cytosine. Inhibition of cytotoxicity by exogenous adenine was accompanied by a reduction of DNA-bound cisplatin in wild-type cells. As a membrane permease, Fcy2 may mediate limited cisplatin transport because cisplatin accumulation in whole cells was slightly affected in the fcy2Delta mutant. However, the fcy2Delta mutant had a greater effect on the amount of DNA-bound cisplatin, which decreased to 50 to 60% of that in the wild-type cells. Taken together, our results indicate that dysregulation of the purine nucleotide biosynthesis pathways and the addition of exogenous purines can modulate cisplatin cytotoxicity in Saccharomyces cerevisiae.


Asunto(s)
Antineoplásicos/metabolismo , Cisplatino/metabolismo , Nucleótidos de Purina/biosíntesis , Nucleótidos de Purina/genética , Saccharomyces cerevisiae/metabolismo , Antineoplásicos/toxicidad , Cisplatino/toxicidad , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Genes Fúngicos/efectos de los fármacos , Hipoxantina Fosforribosiltransferasa/genética , Mutación , Saccharomyces cerevisiae/genética
13.
Mol Microbiol ; 68(6): 1583-94, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18433446

RESUMEN

Adenylate kinase (Adk1p) is a pivotal enzyme in both energetic and adenylic nucleotide metabolisms. In this paper, using a transcriptomic analysis, we show that the lack of Adk1p strongly induced expression of the PHO and ADE genes involved in phosphate utilization and AMP de novo biosynthesis respectively. Isolation and characterization of adk1 point mutants affecting PHO5 expression revealed that all these mutations also severely affected Adk1p catalytic activity, as well as PHO84 and ADE1 transcription. Furthermore, overexpression of distantly related enzymes such as human adenylate kinase or yeast UMP kinase was sufficient to restore regulation. These results demonstrate that adenylate kinase catalytic activity is critical for proper regulation of the PHO and ADE pathways. We also establish that adk1 deletion and purine limitation have similar effects on both adenylic nucleotide pool and PHO84 or ADE17 expression. Finally, we show that, in the adk1 mutant, upregulation of ADE1 depends on synthesis of the previously described effector(s) (S)AICAR ((N-succinyl)-5-aminoimidazol-4-carboxamide ribotide), while upregulation of PHO84 necessitates the Spl2p positive regulator. This work reveals that adenylic nucleotide availability is a key signal used by yeast to co-ordinate phosphate utilization and purine synthesis.


Asunto(s)
Nucleótidos de Adenina/metabolismo , Adenilato Quinasa/metabolismo , Regulación Fúngica de la Expresión Génica , Isoenzimas/metabolismo , Redes y Vías Metabólicas , Fosfatos/metabolismo , Purinas/metabolismo , Levaduras/enzimología , Adenilato Quinasa/genética , Proteínas Fúngicas , Perfilación de la Expresión Génica , Humanos , Inosina/metabolismo , Isoenzimas/genética , Mutación Puntual , Eliminación de Secuencia , Levaduras/genética , Levaduras/metabolismo
14.
Mol Microbiol ; 60(4): 1014-25, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16677311

RESUMEN

In response to nutrient limitation, Saccharomyces cerevisiae cells enter into a non-proliferating state termed quiescence. This transition is associated with profound changes in gene expression patterns. The adenine deaminase encoding gene AAH1 is among the most precociously and tightly downregulated gene upon entry into quiescence. We show that AAH1 downregulation is not specifically due to glucose exhaustion but is a more general response to nutrient limitation. We also found that Aah1p level is tightly correlated to RAS activity indicating thus an important role for the protein kinase A pathway in this regulation process. We have isolated three deletion mutants, srb10, srb11 and saf1 (ybr280c) affecting AAH1 expression during post-diauxic growth and in early stationary phase. We show that the Srb10p cyclin-dependent kinase and its cyclin, Srb11p, regulate AAH1 expression at the transcriptional level. By contrast, Saf1p, a previously uncharacterized F-box protein, acts at a post-transcriptional level by promoting degradation of Aah1p. This post-transcriptional regulation is abolished by mutations affecting the proteasome or constant subunits of the SCF (Skp1-Cullin-F-box) complex. We propose that Saf1p targets Aah1p for proteasome-dependent degradation upon entry into quiescence. This work provides the first direct evidence for active degradation of proteins in quiescent yeast cells.


Asunto(s)
Aminohidrolasas/metabolismo , Proteínas F-Box/fisiología , Complejo de la Endopetidasa Proteasomal/fisiología , Proteínas Ligasas SKP Cullina F-box/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/enzimología , Aminohidrolasas/genética , Proliferación Celular , AMP Cíclico/metabolismo , Quinasa 8 Dependiente de Ciclina , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas , Regulación hacia Abajo , Proteínas F-Box/genética , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Mutación , Complejo de la Endopetidasa Proteasomal/genética , Proteínas Ligasas SKP Cullina F-box/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Eliminación de Secuencia , Factores de Transcripción , Transcripción Genética , Proteínas ras/metabolismo
15.
Genetics ; 170(1): 61-70, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15744050

RESUMEN

Because some metabolic intermediates are involved in more than one pathway, crosstalk between pathways is crucial to maintaining homeostasis. AMP and histidine biosynthesis pathways are coregulated at the transcriptional level in response to adenine availability. 5'-Phosphoribosyl-4-carboxamide-5-aminoimidazole (AICAR), a metabolic intermediate at the crossroads between these two pathways, is shown here to be critical for activation of the transcriptional response in the absence of adenine. In this study, we show that both AMP and histidine pathways significantly contribute to AICAR synthesis. Furthermore, we show that upregulation of the histidine pathway clearly interferes with regulation of the AMP pathway, thus providing an explanation for the regulatory crosstalk between these pathways. Finally, we revisit the histidine auxotrophy of ade3 or ade16 ade17 mutants. Interestingly, overexpression of PMU1, encoding a potential phosphomutase, partially suppresses the histidine requirement of an ade3 ade16 ade17 triple mutant, most probably by reducing the level of AICAR in this mutant. Together our data clearly establish that AICAR is not just a metabolic intermediate but also acts as a true regulatory molecule.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Histidina/metabolismo , Purinas/metabolismo , Ribonucleótidos/fisiología , Saccharomyces cerevisiae/metabolismo , Adenosina Monofosfato/biosíntesis , Aminoimidazol Carboxamida/toxicidad , Ácido Fólico/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , Inosina Monofosfato/metabolismo , Ribonucleótidos/toxicidad , Saccharomyces cerevisiae/genética
16.
J Biol Chem ; 279(34): 35273-80, 2004 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-15194704

RESUMEN

Phosphate is an essential nutrient that must be taken up from the growth medium through specific transporters. In Saccharomyces cerevisiae, both high and low affinity orthophosphate carriers allow this micro-organism to cope with environmental variations. Intriguingly, in this study we found a tight correlation between selenite resistance and expression of the high affinity orthophosphate carrier Pho84p. Our work further revealed that mutations in the low affinity orthophosphate carrier genes (PHO87, PHO90, and PHO91) cause deregulation of phosphate-repressed genes. Strikingly, the deregulation due to pho87Delta, pho90Delta, or pho91Delta mutations was neither correlated to impaired orthophosphate uptake capacity nor to a decrease of the intracellular orthophosphate or polyphosphate pools, as shown by (31)P NMR spectroscopy. Thus, our data clearly establish that the low affinity orthophosphate carriers affect phosphate regulation independently of intracellular orthophosphate concentration through a new signaling pathway that was found to strictly require the cyclin-dependent kinase inhibitor Pho81p. We propose that phosphate-regulated gene expression is under the control of two different regulatory signals as follows: the sensing of internal orthophosphate by a yet unidentified protein and the sensing of external orthophosphate by low affinity orthophosphate transporters; the former would be required to maintain phosphate homeostasis, and the latter would keep the cell informed on the medium phosphate richness.


Asunto(s)
Regulación Fúngica de la Expresión Génica/fisiología , Saccharomyces cerevisiae/genética , Simportadores/genética , Transporte Biológico , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fosfatos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato , Simportadores/metabolismo
17.
J Mol Biol ; 334(5): 1117-31, 2003 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-14643670

RESUMEN

No gene coding for an adenine deaminase has been described in eukaryotes. However, physiological and genetical evidence indicates that adenine deaminases are present in the ascomycetes. We have cloned and characterised the genes coding for the adenine deaminases of Aspergillus nidulans, Saccharomyces cerevisiae and Schizosaccharomyces pombe. The A.nidulans gene was expressed in Escherichia coli and the purified enzyme shows adenine but not adenosine deaminase activity. The open reading frames coded by the three genes are very similar and obviously related to the bacterial and eukaryotic adenosine deaminases rather than to the bacterial adenine deaminases. The latter are related to allantoinases, ureases and dihydroorotases. The fungal adenine deaminases and the homologous adenosine deaminases differ in a number of residues, some of these being clearly involved in substrate specificity. Other prokaryotic enzymes in the database, while clearly related to the above, do not fit into either sub-class, and may even have a different specificity. These results imply that adenine deaminases have appeared twice in the course of evolution, from different ancestral enzymes constructed both around the alpha/beta barrel scaffold.


Asunto(s)
Aminohidrolasas/metabolismo , Hongos/enzimología , Secuencia de Aminoácidos , Aminohidrolasas/química , Aminohidrolasas/genética , Secuencia de Bases , Clonación Molecular , Cartilla de ADN , ADN Complementario , Datos de Secuencia Molecular , Mutación , Homología de Secuencia de Aminoácido , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA