Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Int J Food Microbiol ; 424: 110857, 2024 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-39141973

RESUMEN

Functional foods represent one of the fastest-growing, newer food category, and plant sources with functional properties are increasingly used as analogues of fermented milk-based derivatives. In this study, blended wort-rooibos beverages fermented with probiotic yeasts are proposed for the first time. Benefits of functional, non-conventional Lachancea thermotolerans (Lt101), Kazachstania unispora (Kum3-B3), Meyerozyma guilliermondii (Mg112), Meyerozyma caribbica (Mc58) and Debaryomyces hansenii (Dh36) yeast strains and the content of bioactive metabolites were evaluated. Viability tests on the probiotic yeasts confirmed previous results obtained in other matrices. The functional footprint of probiotic yeasts Lt101, Mg112 and Dh36 was confirmed by a balanced nutritional profile of the final drinks, also supported by aromatic and sensory analyses. In vitro estimated glycaemic index ranged between 77 % and 87 % without any influence on glycaemic response. Strains Dh36, Mc58, Kum3-B3 and Mg112 showed high antioxidant capacity and high total phenolic content, supporting the health promoting effect of the beverages.


Asunto(s)
Antioxidantes , Fermentación , Alimentos Fermentados , Probióticos , Levaduras , Levaduras/metabolismo , Alimentos Fermentados/microbiología , Bebidas/microbiología , Alimentos Funcionales , Microbiología de Alimentos , Humanos , Fenoles/metabolismo , Fenoles/análisis
2.
Int J Mol Sci ; 25(12)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38928331

RESUMEN

Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder currently affecting the ageing population. Although the aetiology of PD has yet to be fully elucidated, environmental factors such as exposure to the naturally occurring neurotoxin rotenone has been associated with an increased risk of developing PD. Rotenone inhibits mitochondrial respiratory chain (MRC) complex I activity as well as induces dopaminergic neuronal death. The aim of the present study was to investigate the underlying mechanisms of rotenone-induced mitochondrial dysfunction and oxidative stress in an in vitro SH-SY5Y neuronal cell model of PD and to assess the ability of pre-treatment with Coenzyme Q10 (CoQ10) to ameliorate oxidative stress in this model. Spectrophotometric determination of the mitochondrial enzyme activities and fluorescence probe studies of reactive oxygen species (ROS) production was assessed. Significant inhibition of MRC complex I and II-III activities was observed, together with a significant loss of neuronal viability, CoQ10 status, and ATP synthesis. Additionally, significant increases were observed in intracellular and mitochondrial ROS production. Remarkably, CoQ10 supplementation was found to reduce ROS formation. These results have indicated mitochondrial dysfunction and increased oxidative stress in a rotenone-induced neuronal cell model of PD that was ameliorated by CoQ10 supplementation.


Asunto(s)
Mitocondrias , Neuronas , Estrés Oxidativo , Rotenona , Ubiquinona , Humanos , Ataxia , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Complejo I de Transporte de Electrón/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Enfermedades Mitocondriales , Debilidad Muscular/metabolismo , Debilidad Muscular/inducido químicamente , Debilidad Muscular/patología , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/etiología , Especies Reactivas de Oxígeno/metabolismo , Rotenona/toxicidad , Rotenona/efectos adversos , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Ubiquinona/deficiencia
3.
Antioxidants (Basel) ; 12(11)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-38001796

RESUMEN

European countries have recently started experimenting with growing and producing their own teas in small quantities, mainly for the specialty tea sector. To characterize European teas, this study investigated a set of five tea types obtained from different Camellia sinensis varieties/cultivars, representing various oxidation grades (green, white, yellow, oolong, black), all grown and processed in the only tea garden in Europe (in Germany) that focuses on all five types. Hot and cold brews were studied by measuring the total phenolic (TPC) and flavonoid contents (TFC), the antioxidant capacity and UV-Vis spectra, also with the objective of discriminating between the different tea types and the different plant varieties. The dried leaves were analyzed to measure the content of essential and toxic elements and by ATR-FTIR spectroscopy to determine a chemical fingerprint for identifying the tea varieties and types. The average levels of TPC (hot brew = 5.82 ± 2.06; cold brew = 5.4 ± 2.46 mM GAEq), TFC (hot brew = 0.87 ± 0.309; cold brew = 0.87 ± 0.413 mM CAEq), and antioxidant capacity (ORAC assay-hot brew = 20.9 ± 605; cold brew = 21.8 ± 8.0 mM TXEq, ABTS assay-hot brew = 15.2 ± 5.09; cold brew = 15.1 ± 5.8 mM TXEq, FRAP assay-hot brew = 9.2 ± 3.84; cold brew = 10.4 ± 5.23 mM AAEq) observed compared well with those from other parts of the world such as China, Africa, and Taiwan. The hazard quotient <1 and the hazard index of 0.14 indicate that there is no non-carcinogenic risk from consumption of these teas. The obtained information is essential for elucidating the characteristics and the impact of tea processing and tea variety on the health benefits of these tea products coming from a single European tea garden. This multifaceted approach would help tea growers in Europe increase their knowledge on the health attributes of the teas they grow, ultimately leading to optimization of the nutraceutical properties of these teas.

4.
Chem Biol Interact ; 384: 110702, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37717644

RESUMEN

Paraoxonase-2 (PON2) is an intracellular protein, that exerts a protective role against cell oxidative stress and apoptosis. Genetic and environmental factors (i.e. dietary factors, cigarette smoke, drugs) are able to modulate cellular PON2 levels. The effect of ultraviolet A radiation (UVA), the oxidizing component of sunlight, on PON2 in human dermal fibroblasts (HuDe) has not been previously explored. Excessive UVA radiation is known to cause direct and indirect skin damage by influencing intracellular signalling pathways through oxidative stress mediated by reactive oxygen species (ROS) that modulate the expression of downstream genes involved in different processes, e.g. skin photoaging and cancer. The aim of this study was, therefore, to investigate the modulation of PON2 in terms of protein expression and enzyme activity in HuDe exposed to UVA (270 kJ/m2). Our results show that PON2 is up-regulated immediately after UVA exposure and that its levels and activity decrease in the post-exposure phase, in a time-dependent manner (2-24 h). The trend in PON2 levels mirror the time-course study of UVA-induced ROS. To confirm this, experiments were also performed in the presence of a SPF30 sunscreen used as shielding agent to revert modulation of PON2 at 0 and 2 h post-UVA exposure where other markers of photo-oxidative stress were also examined (NF-KB, γH2AX, advanced glycation end products). Overall, our results show that the upregulation of PON2 might be related to the increase in intracellular ROS and may play an important role in mitigation of UVA-mediated damage and in the prevention of the consequences of UV exposure, thus representing a new marker of early-response to UVA-induced damage in skin fibroblasts.

5.
Int J Mol Sci ; 24(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37298165

RESUMEN

Post-prandial hyperglycemia typical of diabetes mellitus could be alleviated using plant-derived compounds such as polyphenols, which could influence the activities of enzymes involved in carbohydrate digestion and of intestinal glucose transporters. Here, we report on the potential anti-hyperglycemic effect of Crocus sativus tepals compared to stigmas, within the framework of valorizing these by-products of the saffron industry, since the anti-diabetic properties of saffron are well-known, but not those of its tepals. In vitro assays showed that tepal extracts (TE) had a greater inhibitory action than stigma extracts (SE) on α-amylase activity (IC50: TE = 0.60 ± 0.09 mg/mL; SE = 1.10 ± 0.08 mg/mL; acarbose = 0.051 ± 0.07) and on glucose absorption in Caco-2 differentiated cells (TE = 1.20 ± 0.02 mg/mL; SE = 2.30 ± 0.02 mg/mL; phlorizin = 0.23 ± 0.01). Virtual screening performed with principal compounds from stigma and tepals of C. sativus and human pancreatic α-amylase, glucose transporter 2 (GLUT2) and sodium glucose co-transporter-1 (SGLT1) were validated via molecular docking, e.g., for human pancreatic α-amylase, epicatechin 3-o-gallate and catechin-3-o-gallate were the best scored ligands from tepals (-9.5 kcal/mol and -9.4 kcal/mol, respectively), while sesamin and episesamin were the best scored ones from stigmas (-10.1 kcal/mol). Overall, the results point to the potential of C. sativus tepal extracts in the prevention/management of diabetes, likely due to the rich pool of phytocompounds characterized using high-resolution mass spectrometry, some of which are capable of binding and interacting with proteins involved in starch digestion and intestinal glucose transport.


Asunto(s)
Crocus , Diabetes Mellitus , Humanos , Polifenoles/farmacología , Polifenoles/metabolismo , Crocus/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/metabolismo , alfa-Amilasas Pancreáticas/metabolismo , Células CACO-2 , Simulación del Acoplamiento Molecular , Glucosa/metabolismo , Extractos Vegetales/química
6.
Antioxidants (Basel) ; 12(6)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37372036

RESUMEN

Tea is grown around the world under extremely diverse geographic and climatic conditions, namely, in China, India, the Far East and Africa. However, recently, growing tea also appears to be feasible in many regions of Europe, from where high-quality, chemical-free, organic, single-estate teas have been obtained. Hence, the aim of this study was to characterize the health-promoting properties in terms of the antioxidant capacity of traditional hot brews as well as cold brews of black, green and white teas produced across the European territory using a panel of antioxidant assays. Total polyphenol/flavonoid contents and metal chelating activity were also determined. For differentiating the characteristics of the different tea brews, ultraviolet-visible (UV-Vis) spectroscopy and ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry were employed. Overall, our findings demonstrate for the first time that teas grown in Europe are good quality teas that are endowed with levels of health-promoting polyphenols and flavonoids and that have an antioxidant capacity similar to those grown in other parts of the world. This research is a vital contribution to the characterization of European teas, providing essential and important information for both European tea growers and consumers, and could be of guidance and support for the selection of teas grown in the old continent, along with having the best brewing conditions for maximizing the health benefits of tea.

7.
Molecules ; 28(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37175212

RESUMEN

Tea (Camellia sinensis) is the second most consumed beverage worldwide, playing a key role in the human diet. Tea is considered a healthy drink, as its consumption has been linked to a lower risk of cardiovascular disease-related events and death, stroke, metabolic syndrome and obesity. However, several studies have shown that C. sinensis is a hyperaccumulator of Al and other elements that are considered potentially toxic. In the present study, the contents of 15 elements (both essential and toxic) were determined for the first time in tea leaves collected in tea gardens located in six different European countries and processed to provide black and green tea. The results showed that Al was the major toxic element detected, followed by Ni, Cr, Pb, As, Cd, Ag, and Hg. Essential elements were detected in the order of Mn, Fe, Zn, Cu, Co, and Se. Statistically significant correlations (p < 0.05) were found in the distribution of some elements, highlighting mechanisms of synergic or antagonist interaction. Multivariate analysis revealed that geographical origin was the main driver in clustering the samples, while the different treatment processes (black or green) did not significantly affect the contents of elements in the leaves. The estimation of potential non-carcinogenic risk revealed no risk for the consumption of European teas for consumers in terms of potentially toxic elements.


Asunto(s)
Camellia sinensis , Mercurio , Humanos , , Bebidas , Medición de Riesgo
8.
Int J Mol Sci ; 24(7)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37047738

RESUMEN

The demand for organic UV filters as active components in sunscreen products has rapidly risen over the last century, as people have gradually realized the hazards of overexposure to UV radiation. Their extensive usage has resulted in their ubiquitous presence in different aquatic matrices, representing a potential threat to living organisms. In this context, the need to replace classic UV filters such as octyl methoxycinnamate (OMC), one of the most popular UV filters reported to be a potential pollutant of aquatic ecosystems, with more environmentally friendly ones has emerged. In this study, using zebrafish, the first in vivo results regarding the effect of exposure to tempol-methoxycinnamate (TMC), a derivative of OMC, are reported. A comparative study between TMC and OMC was performed, analyzing embryos exposed to similar TMC and OMC concentrations, focusing on morphological and molecular changes. While both compounds seemed not to affect hatching and embryogenesis, OMC exposure caused an increase in endoplasmic reticulum (ER) stress response genes, according to increased eif2ak3, ddit3, nrf2, and nkap mRNA levels and in oxidative stress genes, as observed from modulation of the sod1, sod2, gpr, and trx mRNA levels. On the contrary, exposure to TMC led to reduced toxicity, probably due to the presence of the nitroxide group in the compound's molecular structure responsible for antioxidant activity. In addition, both UV filters were docked with estrogen and androgen receptors where they acted differently, in agreement with the molecular analysis that showed a hormone-like activity for OMC but not for TMC. Overall, the results indicate the suitability of TMC as an alternative, environmentally safer UV filter.


Asunto(s)
Rayos Ultravioleta , Pez Cebra , Animales , Rayos Ultravioleta/efectos adversos , Ecosistema , Protectores Solares/farmacología , Protectores Solares/química , ARN Mensajero , Cinamatos/farmacología , Cinamatos/química
9.
Foods ; 13(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38201143

RESUMEN

ATR-FTIR (Attenuated Total Reflectance Fourier Transform InfraRed) spectroscopy, combined with chemometric, represents a rapid and reliable approach to obtain information about the macromolecular composition of food and plant materials. With a single measurement, the chemical fingerprint of the analyzed sample is rapidly obtained. Hence, this technique was used for investigating 13 differently processed tea leaves (green, black and white) all grown and processed in European tea gardens, and their vacuum-dried tea brews, prepared using both hot and cold water, to observe how the components differ from tea leaf to the in-cup infusion. Spectra were collected in the 1800-600 cm-1 region and were submitted to Principal Component Analysis (PCA). The comparison of the spectral profiles of leaves and hot and cold infusions of tea from the same country, emphasizes how they differ in relation to the different spectral regions. Differences were also noted among the different countries. Furthermore, the changes observed (e.g., at ~1340 cm-1) due to catechin content, confirm the antioxidant properties of these teas. Overall, this experimental approach could be relevant for rapid analysis of various tea types and could pave the way for the industrial discrimination of teas and of their health properties without the need of time-consuming, lab chemical assays.

10.
Mar Drugs ; 22(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276640

RESUMEN

One of the major threats to skin aging and the risk of developing skin cancer is excessive exposure to the sun's ultraviolet radiation (UVR). The use of sunscreens containing different synthetic, organic, and inorganic UVR filters is one of the most widespread defensive measures. However, increasing evidence suggests that some of these compounds are potentially eco-toxic, causing subtle damage to the environment and to marine ecosystems. Resorting to natural products produced in a wide range of marine species to counteract UVR-mediated damage could be an alternative strategy. The present work investigates marine-inspired thiol compounds, derivatives of ovothiol A, isolated from marine invertebrates and known to exhibit unique antioxidant properties. However, their potential use as photoprotective molecules for biocompatible sunscreens and anti-photo aging formulations has not yet been investigated. Here, we report on the UVR absorption properties, photostability, and in vitro UVA shielding activities of two synthetic ovothiol derivatives, 5-thiohistidine and iso-ovothiol A, by spectrophotometric and fluorimetric analysis. We found that the UVA properties of these compounds increase upon exposure to UVA and that their absorption activity is able to screen UVA rays, thus reducing the oxidative damage induced to proteins and lipids. The results of this work demonstrate that these novel marine-inspired compounds could represent an alternative eco-friendly approach for UVR skin protection.


Asunto(s)
Protectores Solares , Rayos Ultravioleta , Rayos Ultravioleta/efectos adversos , Protectores Solares/farmacología , Ecosistema , Piel , Compuestos de Sulfhidrilo
11.
Nutrients ; 14(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36297001

RESUMEN

Epigenetic mechanisms play an important role in the etiology of colorectal cancer (CRC) and other malignancies due, in part, to deregulated bromodomain (BRD) functions. Inhibitors of the bromodomain and extraterminal (BET) family have entered into clinical trials as anticancer agents, and interest has grown in other acetyl 'reader' proteins as therapeutic targets, including non-BET member bromodomain-containing protein 9 (BRD9). We report here that overexpression of BRD9 is associated with poor prognosis in CRC patients, and that siRNA-mediated knockdown of BRD9 decreased cell viability and activated apoptosis in human colon cancer cells, coincident with increased DNA damage. Seeking natural compounds as BRD9 antagonists, molecular docking in silico identified several polyphenols such as Epigallocatechin-3-gallate (EGCG), Equol, Quercetin, and Aspalathin, with favorable binding energies, supported by BROMOscan® (DiscoverX) and isothermal titration calorimetry experiments. Polyphenols mimicked BRD9 knockdown and iBRD9 treatment in reducing colon cancer cell viability, inhibiting colony formation, and enhancing DNA damage and apoptosis. Normal colonic epithelial cells were unaffected, signifying cancer-specific effects. These findings suggest that natural polyphenols recognize and target BRD9 for inhibition, and might serve as useful lead compounds for bromodomain therapeutics in the clinical setting.


Asunto(s)
Antineoplásicos , Neoplasias del Colon , Humanos , Polifenoles/farmacología , Simulación del Acoplamiento Molecular , ARN Interferente Pequeño , Equol , Quercetina , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Apoptosis , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Daño del ADN
12.
Biomedicines ; 10(10)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36289902

RESUMEN

Vitamin C supplementation and exercise influence pro/antioxidative status and the cellular stress response. We tested the effects of exercise training for 6 weeks, supported by 1000 mg of vitamin C supplementation in elderly women. Thirty-six women were divided into two groups: a control group (CON) (n = 18, age 69.4 ± 6.4 years, 70.4 ±10.4 kg body mass) and a supplemented group (SUPP) (n = 18, aged 67.7 ± 5.6 years, body mass 71.46 ± 5.39 kg). Blood samples were taken twice (at baseline and 24 h after the whole period of training), in order to determine vitamin C concentration, the total oxidative status/capacity (TOS/TOC), total antioxidant status/capacity (TAS/TAC), and gene expression associated with cellular stress response: encoding heat shock factor (HSF1), heat shock protein 70 (HSPA1A), heat shock protein 27 (HSPB1), and tumor necrosis factor alpha (TNF-α). We observed a significant increase in TOS/TOC, TAS/TAC, and prooxidant/antioxidant balance in the SUPP group. There was a significant decrease in HSPA1A in the CON group and a different tendency in the expression of HSF1 and TNF-α between groups. In conclusion, vitamin C supplementation enhanced the pro-oxidation in elderly women with a normal plasma vitamin C concentration and influenced minor changes in training adaptation gene expression.

13.
Int J Mol Sci ; 22(21)2021 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-34768878

RESUMEN

Many neurodegenerative and inherited metabolic diseases frequently compromise nervous system function, and mitochondrial dysfunction and oxidative stress have been implicated as key events leading to neurodegeneration. Mitochondria are essential for neuronal function; however, these organelles are major sources of endogenous reactive oxygen species and are vulnerable targets for oxidative stress-induced damage. The brain is very susceptible to oxidative damage due to its high metabolic demand and low antioxidant defence systems, therefore minimal imbalances in the redox state can result in an oxidative environment that favours tissue damage and activates neuroinflammatory processes. Mitochondrial-associated molecular pathways are often compromised in the pathophysiology of neurodegeneration, including the parkin/PINK1, Nrf2, PGC1α, and PPARγ pathways. Impairments to these signalling pathways consequently effect the removal of dysfunctional mitochondria, which has been suggested as contributing to the development of neurodegeneration. Mitochondrial dysfunction prevention has become an attractive therapeutic target, and there are several molecular pathways that can be pharmacologically targeted to remove damaged mitochondria by inducing mitochondrial biogenesis or mitophagy, as well as increasing the antioxidant capacity of the brain, in order to alleviate mitochondrial dysfunction and prevent the development and progression of neurodegeneration in these disorders. Compounds such as natural polyphenolic compounds, bioactive quinones, and Nrf2 activators have been reported in the literature as novel therapeutic candidates capable of targeting defective mitochondrial pathways in order to improve mitochondrial function and reduce the severity of neurodegeneration in these disorders.


Asunto(s)
Enfermedades Metabólicas/metabolismo , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Animales , Antioxidantes/farmacología , Humanos , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Metabólicas/fisiopatología , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Mitocondrias/fisiología , Mitofagia/efectos de los fármacos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/fisiopatología , Neuronas/metabolismo , Oxidación-Reducción , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo
14.
Antioxidants (Basel) ; 10(10)2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34679715

RESUMEN

Pumpkin is considered a healthy and functional food. The consumption of pumpkins and pumpkin-based foods has been shown to confer several beneficial effects on human health due to their antioxidant capacity and terpenoid content. Consequently, this study aimed to characterize the in vitro antioxidant capacity (using FRAP and ABTS assays), terpenoid profile (using an untargeted lipidomics approach via high-resolution UHPLC-Orbitrap mass spectrometry), and carotenoid content (by HPLC-DAD) in pumpkin fruit pulp from accessions differing for species (11 Cucurbita maxima and 9 Cucurbita moschata), cultivar, and origin, belonging to a Serbian breeding collection. These accessions are candidates for inclusion within programs intended to improve pumpkin fruit quality. The results obtained in this work allowed us to highlight the best marker compounds, discriminating both the region of accession collection or breeding ("origin") and the plant species. Furthermore, our findings have helped to identify the most suitable antioxidant-rich varieties to select for national breeding programs for improving human health. These findings provide valuable information to the overall current understanding of the potential health benefits of pumpkins and the discriminant triterpenoids underlying the C. maxima and C. moschata accessions investigated here, which include those of Serbian and non-Serbian origin.

15.
Mar Drugs ; 19(7)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209059

RESUMEN

In the last few decades, the thinning of the ozone layer due to increased atmospheric pollution has exacerbated the negative effects of excessive exposure to solar ultraviolet radiation (UVR), and skin cancer has become a major public health concern. In order to prevent skin damage, public health advice mainly focuses on the use of sunscreens, along with wearing protective clothing and avoiding sun exposure during peak hours. Sunscreens present on the market are topical formulations that contain a number of different synthetic, organic, and inorganic UVR filters with different absorbance profiles, which, when combined, provide broad UVR spectrum protection. However, increased evidence suggests that some of these compounds cause subtle damage to marine ecosystems. One alternative may be the use of natural products that are produced in a wide range of marine species and are mainly thought to act as a defense against UVR-mediated damage. However, their potential for human photoprotection is largely under-investigated. In this review, attention has been placed on the molecular strategies adopted by marine organisms to counteract UVR-induced negative effects and we provide a broad portrayal of the recent literature concerning marine-derived natural products having potential as natural sunscreens/photoprotectants for human skin. Their chemical structure, UVR absorption properties, and their pleiotropic role as bioactive molecules are discussed. Most studies strongly suggest that these natural products could be promising for use in biocompatible sunscreens and may represent an alternative eco-friendly approach to protect humans against UV-induced skin damage.


Asunto(s)
Organismos Acuáticos , Neoplasias Cutáneas/prevención & control , Protectores Solares/uso terapéutico , Animales , Productos Biológicos , Humanos , Protectores Solares/química
16.
Antioxidants (Basel) ; 9(12)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339155

RESUMEN

Impaired adipose tissue function and insulin resistance remain instrumental in promoting hepatic lipid accumulation in conditions of metabolic syndrome. In fact, enhanced lipid accumulation together with oxidative stress and an abnormal inflammatory response underpin the development and severity of non-alcoholic fatty liver disease (NAFLD). There are currently no specific protective drugs against NAFLD, and effective interventions involving regular exercise and healthy diets have proved difficult to achieve and maintain. Alternatively, due to its antioxidant and anti-inflammatory properties, there has been growing interest in understanding the therapeutic effects of N-acetyl cysteine (NAC) against metabolic complications, including NAFLD. Here, reviewed evidence suggests that NAC blocks hepatic lipid accumulation in preclinical models of NAFLD. This is in part through the effective regulation of a fatty acid scavenger molecule (CD36) and transcriptional factors such as sterol regulatory element-binding protein (SREBP)-1c/-2 and peroxisome proliferator-activated receptor gamma (PPARγ). Importantly, NAC appears effective in improving liver function by reducing pro-inflammatory markers such as interleukin (IL)-6 IL-1ß, tumour necrosis factor alpha (TNF-α) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). This was primarily through the attenuation of lipid peroxidation and enhancements in intracellular response antioxidants, particularly glutathione. Very few clinical studies support the beneficial effects of NAC against NAFLD-related complications, thus well-organized randomized clinical trials are still necessary to confirm its therapeutic potential.

17.
Antioxidants (Basel) ; 9(10)2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33081423

RESUMEN

Endothelial dysfunction represents the initial stage in atherosclerotic lesion development which occurs physiologically during aging, but external factors like diet, sedentary lifestyle, smoking accelerate it. Since cigarette smoking promotes oxidative stress and cell damage, we developed an in vitro model of endothelial dysfunction using vascular cells exposed to chemicals present in cigarette smoke, to help elucidate the protective effects of anti-inflammatory and antioxidant agents, such as ubiquinol and vitamin K, that play a fundamental role in vascular health. Treatment of both young and senescent Human Umbilical Vein Endothelial Cells (HUVECs) for 24 h with cigarette smoke extract (CSE) decreased cellular viability, induced apoptosis via reactive oxygen species (ROS) imbalance and mitochondrial dysfunction and promoted an inflammatory response. Moreover, the senescence marker SA-ß-galactosidase was observed in both young CSE-exposed and in senescent HUVECs suggesting that CSE exposure accelerates aging in endothelial cells. Supplementation with 10 µM ubiquinol and menaquinone-7 (MK7) counteracted oxidative stress and inflammation, resulting in improved viability, decreased apoptosis and reduced SA-ß-galactosidase, but were ineffective against CSE-induced mitochondrial permeability transition pore opening. Other K vitamins tested like menaquinone-4 (MK4) and menaquinone-1 (K1) were less protective. In conclusion, CSE exposure was able to promote a stress-induced senescent phenotype in young endothelial cells likely contributing to endothelial dysfunction in vivo. Furthermore, the molecular changes encountered could be offset by ubiquinol and menaquinone-7 supplementation, the latter resulting the most bioactive K vitamin in counteracting CSE-induced damage.

18.
J Cancer Prev ; 25(4): 189-203, 2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33409252

RESUMEN

Natural compounds from diverse sources, including botanicals and commonly consumed foods and beverages, exert beneficial health effects via mechanisms that impact the epigenome and gene expression during disease pathogenesis. By targeting the so-called epigenetic 'readers', 'writers', and 'erasers', dietary phytochemicals can reverse abnormal epigenome signatures in cancer cells and preneoplastic stages. Thus, such agents provide avenues for cancer interception via prevention or treatment/therapeutic strategies. To date, much of the focus on dietary agents has been directed towards writers (e.g., histone acetyltransferases) and erasers (e.g., histone deacetylases), with less attention given to epigenetic readers (e.g., BRD proteins). The drug JQ1 was developed as a prototype epigenetic reader inhibitor, selectively targeting members of the bromodomain and extraterminal domain (BET) family, such as BRD4. Clinical trials with JQ1 as a single agent, or in combination with standard of care therapy, revealed antitumor efficacy but not without toxicity or resistance. In pursuit of second-generation epigenetic reader inhibitors, attention has shifted to natural sources, including dietary agents that might be repurposed as 'JQ1-like' bioactives. This review summarizes the current status of nascent research activity focused on natural compounds as inhibitors of BET and other epigenetic 'reader' proteins, with a perspective on future directions and opportunities.

19.
Antioxidants (Basel) ; 8(10)2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31640245

RESUMEN

Consumption of rooibos (Aspalathus linearis) as herbal tea is growing in popularity worldwide and its health-promoting attributes are mainly ascribed to its phenolic composition, which may be affected by the brewing conditions used. An aspect so far overlooked is the impact of cold brewing vs regular brewing and microwave boiling on the poly(phenolic) profile and in vitro antioxidant capacity of infusions prepared from red ('fermented', oxidized) and green ('unfermented', unoxidized) rooibos, the purpose of the present study. By using an untargeted metabolomics-based approach (UHPLC-QTOF mass spectrometry), 187 phenolic compounds were putatively annotated in both rooibos types, with flavonoids, tyrosols, and phenolic acids the most represented type of phenolic classes. Multivariate statistics (OPLS-DA) highlighted the phenolic classes most affected by the brewing conditions. Similar antioxidant capacities (ORAC and ABTS assays) were observed between cold- and regular-brewed green rooibos and boiled-brewed red rooibos. However, boiling green and red rooibos delivered infusions with the highest antioxidant capacities and total polyphenol content. The polyphenol content strongly correlated with the in vitro antioxidant capacities, especially for flavonoids and phenolic acids. These results contribute to a better understanding of the impact of the preparation method on the potential health benefits of rooibos tea.

20.
J Pharm Sci ; 108(12): 3769-3780, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31521640

RESUMEN

This review addresses a major question of importance to pharmaceutical scientists: how can novel drug delivery systems play a role in maximizing the UV protection of sunscreens? Because more and more people are being diagnosed with skin cancer each year than all other cancers combined, adequate sun protective measures are pivotal. In this context, the present review is to give an up-to-date overview on the different nanocarrier systems that have been explored so far for encapsulating different types of UV filters present on the market. The aim of these carrier systems is to prevent skin penetration and to enhance the photoprotective potential of sunscreen actives. For each supramolecular system, a brief description along with the studies, achievements, and pitfalls, on the type of UV actives inside them, ranging from classical UV filters to new generation of UV actives is given. A brief overview of UV filters encapsulated in microcarriers is also discussed.


Asunto(s)
Portadores de Fármacos/química , Nanopartículas/química , Neoplasias Cutáneas/prevención & control , Piel/efectos de los fármacos , Protectores Solares/química , Protectores Solares/farmacología , Rayos Ultravioleta/efectos adversos , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA