Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Pharm ; 649: 123632, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38000648

RESUMEN

The efficacy of transfection vectors to cross the endosomal membrane into the cytosol is a central aspect in the development of nucleic acid-based therapeutics. The challenge remains the same: Delivery, Delivery, Delivery. Despite a rational and appropriate construct of triblock polymeric micelles, which could serve as an ideal platform for the co-delivery of siRNAs and hydrophobic anticancer drugs, we show here its inability to properly convey oligonucleotides to their final destination. In order to overcome biological barriers, a linear PEI comprising two orthogonal groups was synthesized, holding an appropriate balance between safety and efficacy. Micellar carriers were then formulated with this polymer to enhance endosomal siRNA release. This chemical technology also addresses the two major challenges to consider when developing novel micellar products for siRNA delivery, namely cytotoxicity of polycations and endosomal escape. Herein, we demonstrate successful release of siRNA using a polymer tailoring strategy combined with a relevant in vitro approach, considering STAT3 as a promising target in the treatment of non-small cell lung cancer (NSCLC).


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , ARN Interferente Pequeño/química , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/terapia , Polietileneimina/química , Micelas , Neoplasias Pulmonares/genética , Polímeros/química , Línea Celular Tumoral
2.
Proc Natl Acad Sci U S A ; 117(50): 31871-31881, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33257567

RESUMEN

TAT-RasGAP317-326 is a cell-penetrating peptide-based construct with anticancer and antimicrobial activities. This peptide kills a subset of cancer cells in a manner that does not involve known programmed cell death pathways. Here we have elucidated the mode of action allowing TAT-RasGAP317-326 to kill cells. This peptide binds and disrupts artificial membranes containing lipids typically enriched in the inner leaflet of the plasma membrane, such as phosphatidylinositol-bisphosphate (PIP2) and phosphatidylserine (PS). Decreasing the amounts of PIP2 in cells renders them more resistant to TAT-RasGAP317-326, while reducing the ability of cells to repair their plasma membrane makes them more sensitive to the peptide. The W317A TAT-RasGAP317-326 point mutant, known to have impaired killing activities, has reduced abilities to bind and permeabilize PIP2- and PS-containing membranes and to translocate through biomembranes, presumably because of a higher propensity to adopt an α-helical state. This work shows that TAT-RasGAP317-326 kills cells via a form of necrosis that relies on the physical disruption of the plasma membrane once the peptide targets specific phospholipids found on the cytosolic side of the plasma membrane.


Asunto(s)
Muerte Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Proteínas Activadoras de GTPasa/farmacología , Fragmentos de Péptidos/farmacología , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilserinas/metabolismo , Animales , Células CHO , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Cricetulus , Proteínas Activadoras de GTPasa/uso terapéutico , Células HeLa , Humanos , Liposomas/metabolismo , Liposomas/ultraestructura , Microscopía Electrónica , Simulación de Dinámica Molecular , Neoplasias/tratamiento farmacológico , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/uso terapéutico
3.
Nanoscale ; 12(44): 22596-22614, 2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33150350

RESUMEN

Trodusquemine is an aminosterol known to prevent the binding of misfolded protein oligomers to cell membranes and to reduce their toxicity in a wide range of neurodegenerative diseases. Its precise mechanism of action, however, remains unclear. To investigate this mechanism, we performed confocal microscopy, fluorescence resonance energy transfer (FRET) and nuclear magnetic resonance (NMR) measurements, which revealed a strong binding of trodusquemine to large unilamellar vesicles (LUVs) and neuroblastoma cell membranes. Then, by combining quartz crystal microbalance (QCM), fluorescence quenching and anisotropy, and molecular dynamics (MD) simulations, we found that trodusquemine localises within, and penetrates, the polar region of lipid bilayer. This binding behaviour causes a decrease of the negative charge of the bilayer, as observed through ζ potential measurements, an increment in the mechanical resistance of the bilayer, as revealed by measurements of the breakthrough force applied with AFM and ζ potential measurements at high temperature, and a rearrangement of the spatial distances between ganglioside and cholesterol molecules in the LUVs, as determined by FRET measurements. These physicochemical changes are all known to impair the interaction of misfolded oligomers with cell membranes, protecting them from their toxicity. Taken together, our results illustrate how the incorporation in cell membranes of sterol molecules modified by the addition of polyamine tails leads to the modulation of physicochemical properties of the cell membranes themselves, making them more resistant to protein aggregates associated with neurodegeneration. More generally, they suggest that therapeutic strategies can be developed to reinforce cell membranes against protein misfolded assemblies.


Asunto(s)
Membrana Dobles de Lípidos , Liposomas Unilamelares , Membrana Celular , Colestanos , Espermina/análogos & derivados
4.
J Chromatogr A ; 1612: 460661, 2020 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-31708215

RESUMEN

Untargeted steroid identification represents a great analytical challenge even when using sophisticated technology such as two-dimensional gas chromatography coupled to high resolution mass spectrometry (GC × GCHRMS) due to the chemical similarity of the analytes. Moreover, when analytical standards, mass spectral and retention index databases are not available, compound annotation is cumbersome. Hence, there is a need for the development of retention time prediction models in order to explore new annotation approaches. In this work, we evaluated the use of several in silico methods for retention time prediction in multidimensional gas chromatography. We use three classical machine learning (CML) algorithms (Partial Least Squares (PLS), Support Vector Regression (SVR) and Random Forest Regression (RFR)) and two deep learning approaches (dense neural network (DNN) and three-dimensional convolutional neural network (CNN)). Whereas molecular descriptors were utilized for the CLM and DNN algorithms, three-dimensional molecular representation based on the electrostatic potential (ESP) was studied as input data as is for the CNN. All the developed models showed similar performances with Q2 values over 0.9. However, among all CNN showed the best performance, resulting in average retention time prediction errors of 2% and 6% for the first and second separation dimension, respectively. Additionally, only the three-dimensional ESP representation coupled with CNN was able to extract the stereochemical information crucial for the separation of diastereomers. The combination of retention time prediction and high-resolution mass spectral data applied to clinical samples enabled the untargeted annotation of 12 steroid metabolites in the urine of new-borns.


Asunto(s)
Aprendizaje Profundo , Cromatografía de Gases y Espectrometría de Masas/métodos , Esteroides/análisis , Análisis de los Mínimos Cuadrados , Redes Neurales de la Computación , Electricidad Estática , Esteroides/química , Máquina de Vectores de Soporte
5.
J Nanobiotechnology ; 17(1): 115, 2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31711496
6.
Biomacromolecules ; 20(3): 1429-1442, 2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30707833

RESUMEN

Fludarabine is an anticancer antimetabolite essential for modern chemotherapy, but its efficacy is limited due to the complex pharmacokinetics. We demonstrated the potential use of maltose-modified poly(propyleneimine) dendrimer as drug delivery agent to improve the efficiency of therapy with fludarabine. In this study, we elaborated a novel synthesis technique for radioactively labeled fludarabine triphosphate to prove for the first time the direct ability of nucleotide-glycodendrimer complex to enter and kill leukemic cells, without the involvement of membrane nucleoside transporters and intracellular kinases. This will potentially allow to bypass the most common drug resistance mechanisms observed in the clinical setting. Further, we applied surface plasmon resonance and molecular modeling to elucidate the properties of the drug-dendrimer complexes. We showed that clofarabine, a more toxic nucleoside analogue drug, is characterized by significantly different molecular interactions with poly(propyleneimine) dendrimers than fludarabine, leading to different cellular outcomes (decreased rather than increased treatment efficiency). The most probable mechanistic explanation of uniquely dendrimer-enhanced fludarabine toxicity points to a crucial role of both an alternative cellular uptake pathway and the avoidance of intracellular phosphorylation of nucleoside drug form.


Asunto(s)
Antimetabolitos Antineoplásicos/química , Antineoplásicos/química , Clofarabina/química , Dendrímeros/química , Maltosa/química , Polipropilenos/química , Vidarabina/análogos & derivados , Antimetabolitos Antineoplásicos/farmacocinética , Humanos , Resonancia por Plasmón de Superficie , Células U937 , Vidarabina/química , Vidarabina/farmacocinética
7.
Pharmaceuticals (Basel) ; 11(1)2018 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-29462934

RESUMEN

The Toll-Like Receptor 7 (TLR7) is an endosomal membrane receptor involved in the innate immune system response. Its best-known small molecule activators are imidazoquinoline derivatives such as imiquimod (R-837) and resiquimod (R-848). Recently, an interaction between R-837 and the colchicine binding site of tubulin was reported. To investigate the possibility of an interaction between structural analogues of colchicine and the TLR7, a recent computational model for the dimeric form of the TLR7 receptor was used to determine a possible interaction with a colchicine derivative called CR42-24, active as a tubulin polymerization inhibitor. The estimated values of the binding energy of this molecule with respect to the TLR7 receptor were comparable to the energies of known binders as reported in a previous study. The binding to the TLR7 was further assessed by introducing genetic transformations in the TLR7 gene in cancer cell lines and exposing them to the compound. A negative shift of the IC50 value in terms of cell growth was observed in cell lines carrying the mutated TLR7 gene. The reported study suggests a possible interaction between TLR7 and a colchicine derivative, which can be explored for rational design of new drugs acting on this receptor by using a colchicine scaffold for additional modifications.

8.
PLoS One ; 12(10): e0186816, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29088239

RESUMEN

The success of medical threatments with DNA and silencing interference RNA is strongly related to the design of efficient delivery technologies. Cationic polymers represent an attractive strategy to serve as nucleic-acid carriers with the envisioned advantages of efficient complexation, low cost, ease of production, well-defined size, and low polydispersity index. However, the balance between efficacy and toxicity (safety) of these polymers is a challenge and in need of improvement. With the aim of designing more effective polycationic-based gene carriers, many parameters such as carrier morphology, size, molecular weight, surface chemistry, and flexibility/rigidity ratio need to be taken into consideration. In the present work, the binding mechanism of three cationic polymers (polyarginine, polylysine and polyethyleneimine) to a model siRNA target is computationally investigated at the atomistic level. In order to better understand the polycationic carrier-siRNA interactions, replica exchange molecular dynamic simulations were carried out to provide an exhaustive exploration of all the possible binding sites, taking fully into account the siRNA flexibility together with the presence of explicit solvent and ions. Moreover, well-tempered metadynamics simulations were employed to elucidate how molecular geometry, polycation flexibility, and charge neutralization affect the siRNA-polycations free energy landscape in term of low-energy binding modes and unbinding free energy barriers. Significant differences among polymer binding modes have been detected, revealing the advantageous binding properties of polyarginine and polylysine compared to polyethyleneimine.


Asunto(s)
Simulación de Dinámica Molecular , Péptidos/química , Polietileneimina/química , Polilisina/química , ARN Interferente Pequeño/química , Cationes/química , Fenómenos Químicos , Técnicas de Transferencia de Gen , Estructura Molecular , Peso Molecular , Conformación de Ácido Nucleico , Poliaminas , Polielectrolitos , Interferencia de ARN , ARN Interferente Pequeño/genética , Termodinámica
9.
Molecules ; 20(5): 8316-40, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-26007168

RESUMEN

Toll-Like Receptors (TLR) are a large family of proteins involved in the immune system response. Both the activation and the inhibition of these receptors can have positive effects on several diseases, including viral pathologies and cancer, therefore prompting the development of new compounds. In order to provide new indications for the design of Toll-Like Receptor 7 (TLR7)-targeting drugs, the mechanism of interaction between the TLR7 and two important classes of agonists (imidazoquinoline and adenine derivatives) was investigated through docking and Molecular Dynamics simulations. To perform the computational analysis, a new model for the dimeric form of the receptors was necessary and therefore created. Qualitative and quantitative differences between agonists and inactive compounds were determined. The in silico results were compared with previous experimental observations and employed to define the ligand binding mechanism of TLR7.


Asunto(s)
Adenina/química , Biología Computacional/métodos , Quinolinas/química , Receptor Toll-Like 7/química , Receptor Toll-Like 7/metabolismo , Inmunidad Adaptativa/inmunología , Adenina/análogos & derivados , Humanos , Inmunidad Innata/inmunología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica/fisiología , Estructura Terciaria de Proteína , Receptor Toll-Like 8/química
10.
J Phys Chem B ; 118(42): 12098-111, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25247928

RESUMEN

Understanding the early onset of neurodegeneration is crucial to deploy specific treatments for patients before the process becomes irreversible. Copper has been proposed as a biomarker for many neurodegenerative disorders, being the ion released by pathologically unfolded proteins involved in many biochemical pathways. Dendrimers are macromolecules that bind metal ions with a large ion/ligand ratio, thus, allowing a massive collection of copper. This work provides structural information, obtained via molecular modeling and EPR, for the binding sites of copper in polypropyleneimine (PPI) dendrimers, especially in the maltose decorated form that has potential applications in diagnosis and therapies for various types of neurodegenerations. The analysis of the EPR spectra showed that, at the lowest Cu concentrations, the results are well supported by the calculations. Moreover, EPR analysis at increasing Cu(II) concentration allowed us to follow the saturation behavior of the interacting sites identified by the modeling study.


Asunto(s)
Cobre/química , Dendrímeros/química , Maltosa/química , Simulación de Dinámica Molecular , Polipropilenos/química , Sitios de Unión , Espectroscopía de Resonancia por Spin del Electrón , Conformación Molecular
11.
Chem Biol Drug Des ; 83(6): 656-65, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24406029

RESUMEN

Toll-like receptor protein 7 is a transmembrane protein playing a crucial role in the signaling pathways involved in innate immunity. Its crystal structure is not yet available, but there are several proteins possessing domains of sufficiently high homology, which enabled us to build a model of the toll-like receptor protein 7 monomer and gain insights into dimer formation. To obtain a reliable structure prediction, we subjected this model to equilibration using molecular dynamics simulations. Furthermore, the equilibrated monomer structure was used to construct models of dimerization and to predict binding sites for small ligands. Docking studies were performed for some of the known toll-like receptor protein 7 ligands. We determined that a new homology model generated by the LOOPP server provides a good alternative to a previously reported model. Our docking results indicate that the addition of either imiquimod or 1V209 to a toll-like receptor protein 7 dimer changes an unfavorable interaction into a favorable one. We found that eight small molecules docked to two pockets in toll-like receptor protein 7 bind to both pockets at pH 7 and at pH 5.5. This work provides a realistic model that could be used for drug discovery aimed at finding toll-like receptor protein 7 dimerization activators, with potential clinical applications to a host of diseases, including cancer.


Asunto(s)
Simulación de Dinámica Molecular , Receptor Toll-Like 7/química , Secuencia de Aminoácidos , Dominio Catalítico , Dimerización , Humanos , Ligandos , Modelos Moleculares , Homología de Secuencia
12.
ScientificWorldJournal ; 2013: 195028, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23844381

RESUMEN

Biological systems are hierarchically self-organized complex structures characterized by nonlinear interactions. Biochemical energy is transformed into work of physical forces required for various biological functions. We postulate that energy transduction depends on endogenous electrodynamic fields generated by microtubules. Microtubules and mitochondria colocalize in cells with microtubules providing tracks for mitochondrial movement. Besides energy transformation, mitochondria form a spatially distributed proton charge layer and a resultant strong static electric field, which causes water ordering in the surrounding cytosol. These effects create conditions for generation of coherent electrodynamic field. The metabolic energy transduction pathways are strongly affected in cancers. Mitochondrial dysfunction in cancer cells (Warburg effect) or in fibroblasts associated with cancer cells (reverse Warburg effect) results in decreased or increased power of the generated electromagnetic field, respectively, and shifted and rebuilt frequency spectra. Disturbed electrodynamic interaction forces between cancer and healthy cells may favor local invasion and metastasis. A therapeutic strategy of targeting dysfunctional mitochondria for restoration of their physiological functions makes it possible to switch on the natural apoptotic pathway blocked in cancer transformed cells. Experience with dichloroacetate in cancer treatment and reestablishment of the healthy state may help in the development of novel effective drugs aimed at the mitochondrial function.


Asunto(s)
Transformación Celular Neoplásica/efectos de la radiación , Campos Electromagnéticos , Transferencia de Energía , Mitocondrias/efectos de la radiación , Modelos Biológicos , Neoplasias/fisiopatología , Animales , Humanos
13.
ACS Nano ; 6(11): 9447-54, 2012 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-23036046

RESUMEN

Polycationic nanocarriers attract increasing attention to the field of siRNA delivery. We investigated the self-assembly of siRNA vs pDNA with polycations, which are broadly used for nonviral gene and siRNA delivery. Although polyethyleneimine (PEI) was routinely adopted as siRNA carrier based on its efficacy in delivering pDNA, it has not been investigated yet why PEI efficiently delivers pDNA to cells but is controversially discussed in terms of efficacy for siRNA delivery. We are the first to investigate the self-assembly of PEI/siRNA vs PEI/pDNA and the steps of complexation and aggregation through different levels of hierarchy on the atomic and molecular scale with the novel synergistic use of molecular modeling, molecular dynamics simulation, isothermal titration calorimetry, and other characterization techniques. We are also the fist to elucidate atomic interactions, size, shape, stoichiometry, and association dynamics for polyplexes containing siRNA vs pDNA. Our investigation highlights differences in the hierarchical mechanism of formation of related polycation-siRNA and polycation-pDNA complexes. The results of fluorescence quenching assays indicated a biphasic behavior of siRNA binding with polycations where molecular reorganization of the siRNA within the polycations occurred at lower N/P ratios (nitrogen/phosphorus). Our results, for the first time, emphasize a biphasic behavior in siRNA complexation and the importance of low N/P ratios, which allow for excellent siRNA delivery efficiency. Our investigation highlights the formulation of siRNA complexes from a thermodynamic point of view and opens new perspectives to advance the rational design of new siRNA delivery systems.


Asunto(s)
Silenciador del Gen , Nanocápsulas/química , Nanocápsulas/ultraestructura , Polietileneimina/química , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Transfección/métodos , Ensayo de Materiales , Tamaño de la Partícula
14.
J Control Release ; 153(1): 23-33, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21342661

RESUMEN

This study aimed to identify suitable siRNA delivery systems based on flexible generation 2-4 triazine dendrimers by correlating physico-chemical and biological in vitro and in vivo properties of the complexes with thermodynamic parameters calculated using molecular modeling. The siRNA binding properties of the dendrimers and PEI 25 kDa were simulated, binding and stability were measured in SYBR Gold assays, and hydrodynamic diameters, zeta potentials, and cytotoxicity were quantified. These parameters were compared with cellular uptake of the complexes and their ability to mediate RNAi. Radiolabeled complexes were administered intravenously, and pharmacokinetic profiles and biodistribution of these polyplexes were assessed both invasively and non-invasively. All flexible triazine dendrimers formed thermodynamically more stable complexes than PEI. While PEI and the generation 4 dendrimer interacted more superficially with siRNA, generation 2 and 3 virtually coalesced with siRNA, forming a tightly intertwined structure. These dendriplexes were therefore more efficiently charge-neutralized than PEI complexes, reducing agglomeration. This behavior was confirmed by results of hydrodynamic diameters (72.0 nm-153.5 nm) and zeta potentials (4.9 mV-21.8 mV in 10 mM HEPES) of the dendriplexes in comparison to PEI complexes (312.8 nm-480.0 nm and 13.7 mV-17.4 mV in 10 mM HEPES). All dendrimers, even generation 3 and 4, were less toxic than PEI. All dendriplexes were efficiently endocytosed and showed significant and specific luciferase knockdown in HeLa/Luc cells. Scintillation counting confirmed that the generation 2 triazine complexes showed more than twofold prolonged circulation times as a result of their good thermodynamic stability. Conversely, generation 3 complexes dissociated in vivo, and generation 4 complexes were captured by the reticulo-endothelial system due to their increased surface charge. Molecular modeling proves very valuable for rationalizing experimental parameters based on the dendrimers' structural properties. Non-invasive molecular imaging predicted the in vivo fate of the complexes. Therefore, both techniques effectively promote the rapid development of safe and efficient siRNA formulations that are stable in vivo.


Asunto(s)
Dendrímeros/química , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/farmacocinética , Triazinas/química , Animales , Dendrímeros/síntesis química , Dendrímeros/metabolismo , Humanos , Ratones , Ratones Endogámicos BALB C , Simulación de Dinámica Molecular , Interferencia de ARN , Transfección , Triazinas/síntesis química , Triazinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA