Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Tipo de estudio
Intervalo de año de publicación
1.
Endocr Regul ; 57(1): 162-172, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37561833

RESUMEN

Objective. Single-walled carbon nanotubes (SWCNTs) are considered to be one of the nanomaterials attractive for biomedical applications, particularly in the health sciences as imaging probes and drug carriers, especially in the field of cancer therapy. The increasing exploitation of nanotubes necessitates a comprehensive evaluation of the potential impact of these nanomaterials, which purposefully accumulate in the cell nucleus, on the human health and the function of the genome in the normal and tumor tissues. The aim of this study was to investigate the sensitivity of the expression of DNAJB9 and some other genes associated with the endoplasmic reticulum (ER) stress and cell proliferation to low doses of SWCNTs in normal human astrocytes (NHA/TS) and glioblastoma cells (U87MG) with and without an inhibition of ERN1 signaling pathway of the ER stress. Methods. Normal human astrocytes, line NHA/TS and U87 glioblastoma cells stable transfected by empty vector or dnERN1 (dominant-negative construct of ERN1) were exposed to low doses of SWCNTs (2 and 8 ng/ml) for 24 h. RNA was extracted from the cells and used for cDNA synthesis. The expression levels of DNAJB9, TOB1, BRCA1, DDX58, TFPI2, CLU, and P4HA2 mRNAs were measured by a quantitative polymerase chain reaction and normalized to ACTB mRNA. Results. It was found that the low doses of SWCNTs up-regulated the expression of DNAJB9, TOB1, BRCA1, DDX58, TFPI2, CLU, and P4HA2 genes in normal human astrocytes in dose-dependent (2 and 8 ng/ml) and gene-specific manner. These nanotubes also increased the expression of most studied genes in control (transfected by empty vector) U87 glioblastoma cells, but with much lesser extent than in NHA/TS. However, the expression of CLU gene in control U87 glioblastoma cells treated with SWCNTs was down-regulated in a dose-dependent manner. Furthermore, the expression of TOB1 and P4HA2 genes did not significantly change in these glioblastoma cells treated by lower dose of SWCNTs only. At the same time, inhibition of ERN1 signaling pathway of ER stress in U87 glioblastoma cells led mainly to a stronger resistance of DNAJB9, TOB1, BRCA1, DDX58, TFPI2, and P4HA2 gene expression to both doses of SWCNTs. Conclusion. The data obtained demonstrate that the low doses of SWCNTs disturbed the genome functions by changing the levels of key regulatory gene expressions in gene-specific and dose-dependent manner, but their impact was much stronger in the normal human astrocytes in comparison with the tumor cells. It is possible that ER stress, which is constantly present in tumor cells and responsible for multiple resistances, also created a partial resistance to the SWCNTs action. Low doses of SWCNTs induced more pronounced changes in the expression of diverse genes in the normal human astrocytes compared to glioblastoma cells indicating for a possible both genotoxic and neurotoxic effects with a greater extent in the normal cells.


Asunto(s)
Glioblastoma , Nanotubos de Carbono , Humanos , Glioblastoma/genética , Astrocitos , Proteínas Serina-Treonina Quinasas/genética , Línea Celular Tumoral , Proteínas de la Membrana/genética , Chaperonas Moleculares/genética , Proteínas del Choque Térmico HSP40
2.
Endocr Regul ; 56(4): 254-264, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36270342

RESUMEN

Objective. The aim of the present study was to investigate the expression of pyruvate dehydrogenase genes such as PDHA1, PDHB, DLAT, DLD, and PDHX in U87 glioma cells in response to glutamine and glucose deprivations in control glioma cells and endoplasmic reticulum to nucleus signaling 1 (ERN1) knockdown cells, the major endoplasmic reticulum (ER) stress signaling pathway, to find out whether there exists a possible dependence of these important regulatory genes expression on both glutamine and glucose supply as well as ERN1 signaling. Methods. The expression level of PDHA1, PDHB, DLAT, DLD, and PDHX genes was studied by real-time quantitative polymerase chain reaction in control U87 glioma cells (transfected by empty vector) and cells with inhibition of ERN1(transfected by dnERN1) after cells exposure to glucose and glutamine deprivations. Results. The data showed that the expression level of PDHA1, PDHB, DLAT, and DLD genes was down-regulated (more profound in PDHB gene) in control glioma cells treated with glutamine deprivation. At the same time, ERN1 knockdown modified the impact of glutamine deprivation on the expression level of all these genes in glioma cells: suppressed the sensitivity of PDHB and DLD genes expression and removed the impact of glutamine deprivation on the expression of PDHA1 and DLAT genes. Glucose deprivation did not significantly change the expression level of all studied genes in control glioma cells, but ERN1 knockdown is suppressed the impact of glucose deprivation on PDHX and DLD genes expression and significantly enhanced the expression of PDHA1 and PDHB genes. No significant changes were observed in the sensitivity of PDHX gene expression to glutamine deprivation neither in control nor ERN1 knock-down glioma cells. The knock-down of ERN1 removed the sensitivity of DLAT gene expression to glucose deprivation. Conclusion. The results of this investigation demonstrate that the exposure of control U87 glioma cells under glutamine deprivation significantly affected the expression of PDHA1, PDHB, DLAT, and DLD genes in a gene specific manner and that impact of glutamine deprivation was modified by inhibition of the ER stress signaling mediated by ERN1. At the same time, glucose deprivation affected the expression of PDHA1, PDHB, PDHX, and DLD genes in ERN1 knockdown glioma cells only. Thus, the expression of pyruvate dehydrogenase genes under glutamine and glucose deprivation conditions appears to be controlled by the ER stress signaling through ERN1.


Asunto(s)
Glioma , Glutamina , Humanos , Glutamina/farmacología , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Glucosa/farmacología , Proteínas Serina-Treonina Quinasas/genética , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Glioma/genética , Glioma/metabolismo , Transducción de Señal , Oxidorreductasas/metabolismo , Piruvatos
3.
Endocr Regul ; 54(1): 31-42, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32597148

RESUMEN

OBJECTIVE: The aim of the present study was to investigate the effect of adipokine NAMPT (nicotinamide phosphoribosyltransferase) silencing on the expression of genes encoding IRS1 (insulin receptor substrate 1) and some other proliferation related proteins in U87 glioma cells for evaluation of the possible significance of this adipokine in intergenic interactions. METHODS: The silencing of NAMPT mRNA was introduced by NAMPT specific siRNA. The expression level of NAMPT, IGFBP3, IRS1, HK2, PER2, CLU, BNIP3, TPD52, GADD45A, and MKI67 genes was studied in U87 glioma cells by quantitative polymerase chain reaction. Anti-visfatin antibody was used for detection of NAMPT protein by Western-blot analysis. RESULTS: It was shown that the silencing of NAMPT mRNA led to a strong down-regulation of NAMPT protein and significant modification of the expression of IRS1, IGFBP3, CLU, HK2, BNIP3, and MKI67 genes in glioma cells and a strong up-regulation of IGFBP3 and IRS1 and down-regulation of CLU, BNIP3, HK2, and MKI67 gene expressions. At the same time, no significant changes were detected in the expression of GADD45A, PER2, and TPD52 genes in glioma cells treated by siRNA specific to NAMPT. Furthermore, the silencing of NAMPT mRNA suppressed the glioma cell proliferation. CONCLUSIONS: Results of this investigation demonstrated that silencing of NAMPT mRNA with corresponding down-regulation of NAMPT protein and suppression of the glioma cell proliferation affected the expression of IRS1 gene as well as many other genes encoding the proliferation related proteins. It is possible that dysregulation of most of the studied genes in glioma cells after silencing of NAMPT is reflected by a complex of intergenic interactions and that NAMPT is an important factor for genome stability and regulatory mechanisms contributing to the control of glioma cell metabolism and proliferation.


Asunto(s)
Citocinas/genética , Regulación Neoplásica de la Expresión Génica/genética , Expresión Génica/genética , Glioma/genética , Proteínas Sustrato del Receptor de Insulina/genética , Nicotinamida Fosforribosiltransferasa/genética , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Clusterina/genética , Regulación hacia Abajo , Humanos , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética , Proteínas Circadianas Period/genética , Proteínas Proto-Oncogénicas/genética , ARN Mensajero , ARN Interferente Pequeño , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA