Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Biomacromolecules ; 25(3): 1775-1789, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38377594

RESUMEN

The objective of this study is to enhance the therapeutic efficacy of the anticancer drug, camptothecin (CPT) via a nanoparticle (NP) formulation using a novel amphiphilic biopolymer. We have designed a dimeric prodrug of CPT with the ability to self-amplify and respond to reactive oxygen species (ROS). For this, we incorporated the intracellular ROS generator cinnamaldehyde into a ROS-cleavable thioacetal (TA) linker to obtain the dimeric prodrug of CPT (DCPT(TA)). For its efficient NP delivery, a pH-responsive block copolymer of acetalated dextran and poly(2-ethyl-2-oxazoline) (AcDex-b-PEOz) was synthesized. The amphiphilic feature of the block copolymer enables its self-assembly into micellar NPs and results in high prodrug loading capacity and a rapid release of the prodrug under acidic conditions. Upon cellular uptake by HeLa cells, DCPT(TA)-loaded micellar NPs induce intracellular ROS generation, resulting in accelerated prodrug activation and enhanced cytotoxicity. These results indicate that this system holds significant potential as an effective prodrug delivery strategy in anticancer treatment.


Asunto(s)
Nanopartículas , Profármacos , Humanos , Profármacos/farmacología , Micelas , Especies Reactivas de Oxígeno , Células HeLa , Camptotecina/farmacología , Polímeros , Concentración de Iones de Hidrógeno , Sistemas de Liberación de Medicamentos
2.
Int J Mol Sci ; 24(5)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36901963

RESUMEN

The bactericidal effects of inhalable ciprofloxacin (CIP) loaded-poly(2-ethyl-2-oxazoline) (PEtOx) nanoparticles (NPs) with traces of zinc oxide (ZnO) were investigated against clinical strains of the respiratory pathogens Staphylococcus aureus and Pseudomonas aeruginosa. CIP-loaded PEtOx NPs retained their bactericidal activity within the formulations compared to free CIP drugs against these two pathogens, and bactericidal effects were enhanced with the inclusion of ZnO. PEtOx polymer and ZnO NPs did not show bactericidal activity alone or in combination against these pathogens. The formulations were tested to determine the cytotoxic and proinflammatory effects on airway epithelial cells derived from healthy donors (NHBE), donors with chronic obstructive pulmonary disease (COPD, DHBE), and a cell line derived from adults with cystic fibrosis (CFBE41o-) and macrophages from healthy adult controls (HCs), and those with either COPD or CF. NHBE cells demonstrated maximum cell viability (66%) against CIP-loaded PEtOx NPs with the half maximal inhibitory concentration (IC50) value of 50.7 mg/mL. CIP-loaded PEtOx NPs were more toxic to epithelial cells from donors with respiratory diseases than NHBEs, with respective IC50 values of 0.103 mg/mL for DHBEs and 0.514 mg/mL for CFBE41o- cells. However, high concentrations of CIP-loaded PEtOx NPs were toxic to macrophages, with respective IC50 values of 0.002 mg/mL for HC macrophages and 0.021 mg/mL for CF-like macrophages. PEtOx NPs, ZnO NPs, and ZnO-PEtOx NPs with no drug were not cytotoxic to any cells investigated. The in vitro digestibility of PEtOx and its NPs was investigated in simulated lung fluid (SLF) (pH 7.4). The analysed samples were characterized using Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), and UV-Vis spectroscopy. Digestion of PEtOx NPs commenced one week following incubation and was completely digested after four weeks; however, the original PEtOx was not digested after six weeks of incubation. The outcome of this study revealed that PEtOx polymer could be considered an efficient drug delivery carrier in respiratory linings, and CIP-loaded PEtOx NPs with traces of ZnO could be a promising addition to inhalable treatments against resistant bacteria with reduced toxicity.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Enfermedad Pulmonar Obstructiva Crónica , Óxido de Zinc , Humanos , Ciprofloxacina/farmacología , Óxido de Zinc/química , Antibacterianos/farmacología , Nanopartículas/química , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana
3.
Gels ; 8(12)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36547345

RESUMEN

Basement membrane extracts (BME) derived from Engelbreth-Holm-Swarm (EHS) mouse sarcomas such as Matrigel® remain the gold standard extracellular matrix (ECM) for three-dimensional (3D) cell culture in cancer research. Yet, BMEs suffer from substantial batch-to-batch variation, ill-defined composition, and lack the ability for physichochemical manipulation. Here, we developed a novel 3D cell culture system based on thiolated gelatin (Gel-SH), an inexpensive and highly controlled raw material capable of forming hydrogels with a high level of biophysical control and cell-instructive bioactivity. We demonstrate the successful thiolation of gelatin raw materials to enable rapid covalent crosslinking upon mixing with a synthetic poly(ethylene glycol) (PEG)-based crosslinker. The mechanical properties of the resulting gelatin-based hydrogels were readily tuned by varying precursor material concentrations, with Young's moduli ranging from ~2.5 to 5.8 kPa. All hydrogels of varying stiffnesses supported the viability and proliferation of MDA-MB-231 and MCF-7 breast cancer cell lines for 14 and 21 days of cell culture, respectively. Additionally, the gelatin-based hydrogels supported the growth, viability, and osteogenic differentiation of patient-derived preosteoblasts over 28 days of culture. Collectively, our data demonstrate that gelatin-based biomaterials provide an inexpensive and tunable 3D cell culture platform that may overcome the limitations of traditional BMEs.

4.
ACS Nano ; 16(10): 16497-16512, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36245096

RESUMEN

Biomaterial-associated infections are one of the major causes of implant failure. These infections result from persistent bacteria that have adhered to the biomaterial surface before, during, or after surgery and have formed a biofilm on the implant's surface. It is estimated that 4 to 10% of implant surfaces are contaminated with bacteria; however, the infection rate can be as high as 30% in intensive care units in developed countries and as high as 45% in developing countries. To date, there is no clinical solution to prevent implant infection without relying on the use of high doses of antibiotics supplied systemically and/or removal of the infected device. In this study, melimine, a chimeric cationic peptide that has been tested in Phase I and II human clinical trials, was immobilized onto the surface of 3D-printed medical-grade polycaprolactone (mPCL) scaffolds via covalent binding and adsorption. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) spectra of melimine-treated surfaces confirmed immobilization of the peptide, as well as its homogeneous distribution throughout the scaffold surface. Amino acid analysis showed that melimine covalent and noncovalent immobilization resulted in a peptide density of ∼156 and ∼533 ng/cm2, respectively. Furthermore, we demonstrated that the immobilization of melimine on mPCL scaffolds by 1-ethyl-3-[3-(dimethylamino)propyl] carbodiimide hydrochloride (EDC) coupling and noncovalent interactions resulted in a reduction of Staphylococcus aureus colonization by 78.7% and 76.0%, respectively, in comparison with the nonmodified control specimens. Particularly, the modified surfaces maintained their antibacterial properties for 3 days, which resulted in the inhibition of biofilm formation in vitro. This system offers a biomaterial strategy to effectively prevent biofilm-related infections on implant surfaces without relying on the use of prophylactic antibiotic treatment.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Pseudomonas aeruginosa , Humanos , Péptidos Catiónicos Antimicrobianos/química , Biopelículas , Antibacterianos/farmacología , Antibacterianos/química , Materiales Biocompatibles Revestidos/química , Bacterias , Aminoácidos , Carbodiimidas/farmacología , Impresión Tridimensional
5.
Front Bioeng Biotechnol ; 9: 638577, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33869154

RESUMEN

Infection is the major cause of morbidity after breast implant surgery. Biodegradable medical-grade polycaprolactone (mPCL) scaffolds designed and rooted in evidence-based research offer a promising alternative to overcome the limitations of routinely used silicone implants for breast reconstruction. Nevertheless, as with any implant, biodegradable scaffolds are susceptible to bacterial infection too, especially as bacteria can rapidly colonize the biomaterial surface and form biofilms. Biofilm-related infections are notoriously challenging to treat and can lead to chronic infection and persisting inflammation of surrounding tissue. To date, no clinical solution that allows to efficiently prevent bacterial infection while promoting correct implant integration, has been developed. In this study, we demonstrated for the first time, to our knowledge that the physical immobilization of 1 and 5% human serum albumin (HSA) onto the surface of 3D printed macro- and microporous mPCL scaffolds, resulted in a reduction of Staphylococcus aureus colonization by 71.7 ± 13.6% and 54.3 ± 12.8%, respectively. Notably, when treatment of scaffolds with HSA was followed by tannic acid (TA) crosslinking/stabilization, uniform and stable coatings with improved antibacterial activity were obtained. The HSA/TA-coated scaffolds were shown to be stable when incubated at physiological conditions in cell culture media for 7 days. Moreover, they were capable of inhibiting the growth of S. aureus and Pseudomonas aeruginosa, two most commonly found bacteria in breast implant infections. Most importantly, 1%HSA/10%TA- and 5%HSA/1%TA-coated scaffolds were able to reduce S. aureus colonization on the mPCL surface, by 99.8 ± 0.1% and 98.8 ± 0.6%, respectively, in comparison to the non-coated control specimens. This system offers a new biomaterial strategy to effectively translate the prevention of biofilm-related infections on implant surfaces without relying on the use of prophylactic antibiotic treatment.

6.
Macromol Rapid Commun ; 41(15): e2000295, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32638470

RESUMEN

A method is reported for making hollow channels within hydrogels decorated with cell-adhesion peptides exclusively at the channel surface. Sacrificial fibers of different diameters are used to introduce channels within poly(ethylene glycol) hydrogels crosslinked with maleimide-thiol chemistry, which are backfilled with a cysteine-containing peptide solution which is conjugated to the lumen with good spatial efficiency. This allows for peptide patterning in only the areas of the hydrogel where they are needed when used as cell-guides, reducing the amount of required peptide 20-fold when compared to bulk functionalization. The power of this approach is highlighted by successfully using these patterned hydrogels without active perfusion to guide fibroblasts and olfactory ensheathing cells-the latter having unique potential in neural repair therapies.


Asunto(s)
Adhesión Celular , Técnicas de Cultivo de Célula/métodos , Hidrogeles/química , Péptidos/química , Polietilenglicoles/química , Impresión Tridimensional , Animales , Proliferación Celular , Supervivencia Celular , Hidrogeles/síntesis química , Maleimidas/química , Ratones , Microscopía Fluorescente , Células 3T3 NIH , Compuestos de Sulfhidrilo/química
7.
Biomed Mater ; 15(5): 055033, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32544887

RESUMEN

In tissue engineering, cell-adhesion peptides (CAPs) such as the ubiquitous arginine-glycine-aspartic acid (RGD) sequence have allowed the functionalization of synthetic materials to mimic macromolecules of the extracellular matrix (ECM). However, the variety of ECM macromolecules makes it challenging to reproduce all of the native tissue functions with only a limited variety of CAPs. Screening of libraries of CAPs, analogous to high-throughput drug discovery assays, can help to identify new sequences directing cell organization. However, challenges to this approach include the automation of cell seeding in three dimensions and characterization methods. Here, we report a method for robotically generating a library of 16 CAPs to identify a microenvironment capable of directing a chain-like morphology in olfactory ensheathing cells (OECs), a cell type of particular interest for guiding axon growth in spinal cord injury repair. This approach resulted in the identification of one CAP not previously reported to interact with OECs to direct their morphology into structures suitable for potential axon guidance. The same screening approach should be applicable to any range of cell types to discover new CAPs to direct cell fate or function.


Asunto(s)
Técnicas de Cultivo de Célula , Hidrogeles/química , Oligopéptidos/química , Biblioteca de Péptidos , Polietilenglicoles/química , Traumatismos de la Médula Espinal/terapia , Secuencias de Aminoácidos , Animales , Automatización , Axones/fisiología , Adhesión Celular , Linaje de la Célula , Proliferación Celular , Trasplante de Células/métodos , Matriz Extracelular/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Ensayo de Materiales , Ratones , Microscopía Fluorescente , Regeneración Nerviosa/fisiología , Neuroglía/metabolismo , Péptidos/química , Fenotipo , Robótica , Olfato , Ingeniería de Tejidos/métodos
8.
Biofabrication ; 11(3): 035014, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30933941

RESUMEN

Tissue engineering macroporous scaffolds are important for regeneration of large volume defects resulting from diseases such as breast or bone cancers. Another important part of the treatment of these conditions is adjuvant drug therapy to prevent disease recurrence or surgical site infection. In this study, we developed a new type of macroporous scaffolds that have drug loading and release functionality to use in these scenarios. 3D printing allows for building macroporous scaffolds with deterministically designed complex architectures for tissue engineering yet they often have low surface areas thus limiting their drug loading capability. In this proof-of-concept study, we aimed to introduce microscale porosity into macroporous scaffolds to allow for efficient yet simple soak-loading of various clinical drugs and control their release. Manufacturing of scaffolds having both macroporosity and microscale porosity remains a difficult task. Here, we combined porogen leaching and 3D printing to achieve this goal. Porogen microparticles were mixed with medical grade polycaprolactone and extruded into scaffolds having macropores of 0.7 mm in size. After leaching, intra-strut microscale pores were realized with pore size of 20-70 µm and a total microscale porosity of nearly 40%. Doxorubicin (DOX), paclitaxel (PTX) and cefazolin (CEF) were chosen as model drugs of different charges and solubilities to soak-load the scaffolds and achieved loading efficiency of over 80%. The microscale porosity was found to significantly reduce the burst release allowing the microporous scaffolds to release drugs up to 200, 500 and 150 h for DOX, PTX and CEF, respectively. Finally, cell assays were used and confirmed the bioactivities and dose response of the drug-loaded scaffolds. Together, the findings from this proof-of-concept study demonstrate a new type of scaffolds with dual micro-, macro-porosity for tissue engineering applications with intrinsic capability for efficient loading and sustained release of drugs to prevent post-surgery complications.


Asunto(s)
Sistemas de Liberación de Medicamentos , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Antiinfecciosos/farmacología , Antineoplásicos/farmacología , Cefazolina/farmacología , Línea Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacología , Liberación de Fármacos , Módulo de Elasticidad , Humanos , Pruebas de Sensibilidad Microbiana , Paclitaxel/farmacología , Poliésteres/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Porosidad , Solubilidad , Staphylococcus aureus/efectos de los fármacos , Agua/química
9.
Trends Biotechnol ; 36(4): 372-383, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29422411

RESUMEN

As an alternative to natural extracellular matrix (ECM) macromolecules, cell-adhesion peptides (CAPs) have had tremendous impact on the design of cell culture platforms, implants, and wound dressings. However, only a handful of CAPs have been utilized. The discrepancy in ECM composition strongly affects cell behavior, so it is paramount to reproduce such differences in synthetic systems. This Opinion article presents strategies inspired from high-throughput screening techniques implemented in drug discovery to exploit the potential of a growing CAP library. These strategies are expected to promote the use of a broader spectrum of CAPs, which in turn could lead to improved cell culture models, implants, and wound dressings.


Asunto(s)
Adhesión Celular/fisiología , Péptidos/aislamiento & purificación , Receptores Inmunológicos/química , Receptores de Péptidos/química , Ingeniería de Tejidos , Secuencia de Aminoácidos , Animales , Descubrimiento de Drogas , Matriz Extracelular/fisiología , Ensayos Analíticos de Alto Rendimiento , Humanos , Hidrogeles/química , Ratones , Modelos Animales , Péptidos/química , Prótesis e Implantes
10.
Mater Sci Eng C Mater Biol Appl ; 77: 883-887, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28532105

RESUMEN

The additive manufacturing of small diameter polypropylene microfibers is described, achieved using a technique termed melt electrospinning writing. Sequential fiber layering, which is important for accurate three-dimensional fabrication, was achieved with the smallest fiber diameter of 16.4±0.2µm obtained. The collector speed, temperature and melt flow rate to the nozzle were optimized for quality and minimal fiber pulsing. Of particular importance to the success of this method is appropriate heating of the collector plate, so that the electrostatically drawn filament adheres during the direct-writing process. By demonstrating the direct-writing of polypropylene, new applications exploiting the favorable mechanical, stability and biocompatible properties of this polymer are envisaged.


Asunto(s)
Polipropilenos/química , Poliésteres , Ingeniería de Tejidos , Andamios del Tejido
11.
Cell Adh Migr ; 8(2): 88-93, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24714592

RESUMEN

Synthetic hydrogels selectively decorated with cell adhesion motifs are rapidly emerging as promising substrates for 3D cell culture. When cells are grown in 3D they experience potentially more physiologically relevant cellâ€"cell interactions and physical cues compared with traditional 2D cell culture on stiff surfaces. A newly developed polymer based on poly(2-oxazoline)s has been used for the first time to control attachment of fibroblast cells and is discussed here for its potential use in 3D cell culture with particular focus on cancer cells toward the ultimate aim of high-throughput screening of anticancer therapies. Advantages and limitations of using poly(2-oxazoline) hydrogels are discussed and compared with more established polymers, especially polyethylene glycol (PEG).


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Fibroblastos/citología , Hidrogeles/química , Oxazoles/química , Adhesión Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Humanos , Neoplasias/patología , Polietilenglicoles/química
12.
Eur J Pharm Biopharm ; 87(2): 366-77, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24657821

RESUMEN

The fabrication of tailored microparticles for delivery of therapeutics is a challenge relying upon a complex interplay between processing parameters and materials properties. The emerging use of electrospraying allows better tailoring of particle morphologies and sizes than current techniques, critical to reproducible release profiles. While dry encapsulation of proteins is essential for the release of active therapeutics from microparticles, it is currently uncharacterized in electrospraying. To this end, poly(ethylene glycol) (PEG) was assessed as a micronizing and solubilizing agent for dry protein encapsulation and release from electrosprayed particles made from polycaprolactone (PCL). The physical effect of PEG in protein-loaded poly(lactic-co-glycolic acid) (PLGA) particles was also studied, for comparison. The addition of 5-15 wt% PEG 6 kDa or 35 kDa resulted in reduced PCL particle sizes and broadened distributions, which could be improved by tailoring the electrospraying processing parameters, namely by reducing polymer concentration and increasing flow rate. Upon micronization, protein particle size was reduced to the micrometer domain, resulting in homogenous encapsulation in electrosprayed PCL microparticles. Microparticle size distributions were shown to be the most determinant factor for protein release by diffusion and allowed specific control of release patterns.


Asunto(s)
Portadores de Fármacos , Polietilenglicoles/química , Albúmina Sérica/química , Tecnología Farmacéutica/métodos , Aerosoles , Química Farmacéutica , Preparaciones de Acción Retardada , Difusión , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/química , Liofilización , Cinética , Ácido Láctico/química , Peso Molecular , Tamaño de la Partícula , Poliésteres/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Solubilidad
13.
Mater Sci Eng C Mater Biol Appl ; 33(3): 1446-54, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23827594

RESUMEN

In this study, chitosan-PEO blend, prepared in a 15 M acetic acid, was electrospun into nanofibers (~78 nm diameter) with bead free morphology. While investigating physico-chemical parameters of blend solutions, effect of yield stress on chitosan based nanofiber fabrication was clearly evidenced. Architectural stability of nanofiber mat in aqueous medium was achieved by ionotropic cross-linking of chitosan by tripolyphosphate (TPP) ions. The TPP cross-linked nanofiber mat showed swelling up to ~300% in 1 h and ~40% degradation during 30 day study period. 3T3 fibroblast cells showed good attachment, proliferation and viability on TPP treated chitosan based nanofiber mats. The results indicate non-toxic nature of TPP cross-linked chitosan based nanofibers and their potential to be explored as a tissue engineering matrix.


Asunto(s)
Fenómenos Químicos/efectos de los fármacos , Quitosano/farmacología , Reactivos de Enlaces Cruzados/farmacología , Nanofibras/química , Polifosfatos/farmacología , Células 3T3 , Animales , Adhesión Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cristalización , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/ultraestructura , Ratones , Nanofibras/ultraestructura , Polietilenglicoles/química , Soluciones , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Termogravimetría , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA