Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Am Chem Soc ; 145(2): 898-904, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36576874

RESUMEN

The self-assembly of surfactant-based structures that rely for their formation on the combination of a thermodynamically controlled and a dissipative pathway is described. Adenosine triphosphate (ATP) acts as a high-affinity template and triggers assembly formation at low surfactant concentrations. The presence of these assemblies creates the conditions for the activation of a dissipative self-assembly process by a weak-affinity substrate. The substrate-induced recruitment of additional surfactants leads to the spontaneous formation of catalytic hotspots in the ATP-stabilized assemblies that cleave the substrate. As a result of the two self-assembly processes, catalysis can be observed at a surfactant concentration at which low catalytic activity is observed in the absence of ATP.


Asunto(s)
Adenosina Trifosfato , Tensoactivos , Adenosina Trifosfato/química , Tensoactivos/química , Catálisis
2.
J Mycol Med ; 32(3): 101279, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35490571

RESUMEN

Pythiosis, caused by Pythium insidiosum (a fungal-like stramenipila, a group of eukaryotes away from the true fungi). Pythium insidiosum causes rare human and animal infections. Transmission from animals to human is yet to be reported. Wet soil and plants near watery environments are the source of infection. We report here a fatal case of human pythiosis in a 9-year old child with acute myeloid leukemia. Organism was identified by DNA sequencing.


Asunto(s)
Leucemia Mieloide Aguda , Pitiosis , Pythium , Animales , Niño , Humanos , Leucemia Mieloide Aguda/complicaciones , Leucemia Mieloide Aguda/diagnóstico , Pitiosis/diagnóstico , Análisis de Secuencia de ADN
3.
Chem Commun (Camb) ; 56(90): 13979-13982, 2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33079099

RESUMEN

Precise control over specific functions in the time domain is ubiquitous in biological systems. Here, we demonstrate time-gated fluorescence signalling under dissipative conditions exploiting an ATP-fueled self-assembly process. A temporal ATP-concentration gradient allows the system to pass through three states, among which only the intermediate state generates a fluorescent signal from a hydrophobic dye entrapped in the assemblies. The system can be reactivated by adding a new batch of ATP. The results indicate a strategy to rationally programme the temporal emergence of functions in complex chemical systems.


Asunto(s)
Adenosina Trifosfato/química , Fluorescencia , Estructura Molecular , Factores de Tiempo
5.
Langmuir ; 33(18): 4500-4510, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28438019

RESUMEN

The present article delineates the formation of green fluorescent organic nanoparticle through supramolecular aggregation of naphthalene diimide (NDI)-based, carboxybenzyl-protected, l-phenylalanine-appended bola-amphiphile, NDI-1. The amphiphilic molecule is soluble in DMSO, and, with gradual addition of water within the DMSO solution, the amphiphile starts to self-assemble via H-type aggregation to form spherical nanoparticles. These self-assembly of NDI-1 in the presence of a high amount of water exhibited aggregation-induced emission (AIE) through excimer formation. Notably, in the presence of 99% water content, the amphiphile forms spherical aggregated nanoparticles as confirmed from microscopic investigations and dynamic light scattering study. Interestingly, the emission maxima of molecularly dissolved NDI-1 (weak blue fluorescence) red-shifted upon aggregation with increase in water concentration and led to the formation of green-emitting fluorescent organic nanoparticles (FONPs) at 99% water content. These green-emitting FONPs were utilized in cell imaging as well as for efficient transportation of anticancer drug curcumin inside mammalian cells.

6.
ChemMedChem ; 12(10): 738-750, 2017 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-28403559

RESUMEN

Herein we report the design and development of α5 ß1 integrin-specific noncovalent RGDK-lipopeptide-functionalized single-walled carbon nanotubes (SWNTs) that selectively deliver the anticancer drug curcumin to tumor cells. RGDK tetrapeptide-tagged amphiphiles were synthesized that efficiently disperse SWNTs with a suspension stability index of >80 % in cell culture media. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)- and lactate dehydrogenase (LDH)-based cell viability assays in tumor (B16F10 melanoma) and noncancerous (NIH3T3 mouse fibroblast) cells revealed the non-cytotoxic nature of these RGDK-lipopeptide-SWNT conjugates. Cellular uptake experiments with monoclonal antibodies against αv ß3 , αv ß5 , and α5 ß1 integrins showed that these SWNT nanovectors deliver their cargo (Cy3-labeled oligonucleotides, Cy3-oligo) to B16F10 cells selectively via α5 ß1 integrin. Notably, the nanovectors failed to deliver the Cy3-oligo to NIH3T3 cells. The RGDK-SWNT is capable of delivering the anticancer drug curcumin to B16F10 cells more efficiently than NIH3T3 cells, leading to selective killing of B16F10 cells. Results of Annexin V binding based flow cytometry experiments are consistent with selective killing of tumor cells through the late apoptotic pathway. Biodistribution studies in melanoma (B16F10)-bearing C57BL/6J mice showed tumor-selective accumulation of curcumin intravenously administered via RGDK-lipopeptide-SWNT nanovectors.


Asunto(s)
Curcumina/administración & dosificación , Curcumina/farmacología , Portadores de Fármacos/química , Integrina alfa5beta1/química , Nanotubos de Carbono/química , Oligopéptidos/química , Animales , Anticuerpos Monoclonales/inmunología , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Curcumina/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Integrina alfa5beta1/antagonistas & inhibidores , Integrina alfa5beta1/inmunología , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Células 3T3 NIH , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Tamaño de la Partícula , Relación Estructura-Actividad , Células Tumorales Cultivadas
7.
ACS Appl Mater Interfaces ; 8(39): 25691-25701, 2016 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-27618963

RESUMEN

This Research Article reports the development of nanohybrid comprising of anionic carbon dots (ACD) protected gold nanoparticle (GNP). ACD directly cap GNP through its anionic surface functionalization leading to the formation of stable aqueous GNP dispersion. This newly developed ACD-GNP nanohybrid has been thoroughly characterized by different spectroscopic and microscopic techniques. This nanohybrid is successfully employed toward the selective sensing of glutathione (GSH). The mechanism of GSH sensing by this nanosensor is based on the GSH triggered displacement of fluorescent indicator ACD from the GNP surface. Upon capping GNP, intrinsic fluorescence of ACD gets quenched. Addition of GSH displaces the fluorescent indicator ACD from GNP surface and restores the fluorescence signal of ACD. This nanosensor exhibits very high selectivity as well as sensitivity toward glutathione over the other biothiols and can detect as low as 6 nM of GSH. More importantly, selective imaging of the cancer cells over the noncancerous cells was achieved by this ACD-GNP hybrid implying its potential applications in biosensing, as well as in cancer diagnosis.


Asunto(s)
Glutatión/química , Técnicas Biosensibles , Carbono , Colorantes Fluorescentes , Oro , Nanopartículas del Metal
8.
Langmuir ; 30(9): 2448-59, 2014 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-24528191

RESUMEN

This article delineates the formation and characterization of different enzyme-carbon dot conjugates in aqueous medium (pH = 7.0). We used soybean peroxidase (SBP), Chromobacterium viscosum (CV) lipase, trypsin, and cytochrome c (cyt c) for the formation of conjugate either with cationic carbon dot (CCD) or anionic carbon dot (ACD) depending on the overall charge of the protein at pH 7.0. These nanobioconjugates were used to probe the location of enzymes in water-in-oil (w/o) microemulsion. The size of the synthesized water-soluble carbon dots were of 2-3 nm with distinctive emission property. The formation of enzyme/protein-carbon dot conjugates in aqueous buffer was confirmed via fluorescence spectroscopy and zeta potential measurement, and the structural alteration of enzyme/protein was monitored by circular dichroism spectroscopy. Biocatalytic activities of protein/enzymes in conjugation with carbon dots were found to be decreased in aqueous phosphate buffer (pH 7.0, 25 mM). Interestingly, the catalytic activity of the nanobioconjugates of SBP, CV lipase, and cyt c did not reduce in cetyltrimethylammonium bromide (CTAB)-based reverse micelle. It indicates different localization of carbon dots and the enzymes inside the reverse micelle. The hydrophilic carbon dots always preferred to be located in the water pool of reverse micelle, and thus, enzyme must be located away from the water pool, which is the interface. However, in case of trypsin-carbon dot conjugate, the enzyme activity notably decreased in reverse micelle in the presence of carbon dot in a similar way that was observed in water. This implies that trypsin and carbon dots both must be located at the same place, which is the water pool of reverse micelle. Carbon dot induced deactivation was not observed for those enzymes which stay away from the water pool and localized at the interfacial domain while deactivation is observed for those enzymes which reside at the water pool. Thus, the location of enzymes in the microdomain of w/o microemulsion can be predicted by comparing the activity profile of enzyme-carbon dot conjugate in water and w/o microemulsion.


Asunto(s)
Carbono/química , Citocromos c/química , Lipasa/química , Aceites/química , Peroxidasa/química , Tripsina/química , Carbono/metabolismo , Chromobacterium/enzimología , Citocromos c/metabolismo , Emulsiones/química , Lipasa/metabolismo , Micelas , Aceites/metabolismo , Tamaño de la Partícula , Peroxidasa/metabolismo , Glycine max/enzimología , Propiedades de Superficie , Tripsina/metabolismo , Agua/química , Agua/metabolismo
9.
Colloids Surf B Biointerfaces ; 113: 442-9, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24148754

RESUMEN

The present work reports the development of water-in-oil (w/o) microemulsion doped with newly designed nanocomposite comprising of gold nanoparticle (GNP) decorated single walled carbon nanotube (SWNT). This nanocomposite included cationic reverse micelle was used to boost the catalytic activity of a surface-active enzyme, Chromobacterium viscosum lipase (CV lipase). SWNT was non-covalently dispersed using cetyltrimethylammonium bromide (CTAB), cetylalaninetrimethylammonium chloride (CATAC) while GNP was synthesized by reduction of HAuCl4 with reducing/stabilizing agent trisodium citrate. Counterion exchange between cationic SWNT dispersing agent and anionic capping agent of GNP led to the formation of GNP decorated SWNT (SWNT-GNP) nanocomposite. This newly developed SWNT-GNP included CTAB reverse micelle was characterized by several microscopic and spectroscopic techniques. Interfacially located SWNT-GNP included w/o microemulsion (confirmed from biphasic and fluorescence experiment) was used as a proficient host for enhancing the catalytic activity of lipase. Lipase activity within this self-assembled soft nanocomposite improved up to 3.9-fold (second order rate constant, k2=1694±16 cm(3) g(-1) s(-1)) compared to standard CTAB reverse micelle (k2=433±7 cm(3) g(-1) s(-1)). In case of cetyltripropyl ammonium bromide (CTPAB) based reverse micelle, the observed lipase activity improved to k2=2036±11 cm(3) g(-1) s(-1) in the presence of SWNT-GNP composite. Notably, this catalytic activity of lipase within SWNT-GNP included reverse micelle was till date the highest activity found in any w/o microemulsion. The attainment of flexibility in enzyme conformation at the augmented interface was verified using circular dichroism (CD) spectroscopy.


Asunto(s)
Oro/química , Lipasa/química , Lipasa/metabolismo , Nanopartículas del Metal/química , Nanocompuestos/química , Nanotubos de Carbono/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA