Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Indian J Pharmacol ; 55(5): 322-331, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37929411

RESUMEN

Drug discovery has customarily focused on a de novo design approach, which is extremely expensive and takes several years to evolve before reaching the market. Discovering novel therapeutic benefits for the current drugs could contribute to new treatment alternatives for individuals with complex medical demands that are safe, inexpensive, and timely. In this consequence, when pharmaceutically yield and oncology drug efficacy appear to have hit a stalemate, drug repurposing is a fascinating method for improving cancer treatment. This review gathered about how in silico drug repurposing offers the opportunity to quickly increase the anticancer drug arsenal and, more importantly, overcome some of the limits of existing cancer therapies against both old and new therapeutic targets in oncology. The ancient nononcology compounds' innovative potential targets and important signaling pathways in cancer therapy are also discussed. This review also includes many plant-derived chemical compounds that have shown potential anticancer properties in recent years. Here, we have also tried to bring the spotlight on the new mechanisms to support clinical research, which may become increasingly essential in the future; at the same time, the unsolved or failed clinical trial study should be reinvestigated further based on the techniques and information provided. These encouraging findings, combined together, will through new insight on repurposing more non-oncology drugs for the treatment of cancer.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Reposicionamiento de Medicamentos/métodos , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Descubrimiento de Drogas
3.
Artículo en Inglés | MEDLINE | ID: mdl-36767498

RESUMEN

Worldwide, oral cancer is the sixth most common type of cancer. India is in 2nd position, with the highest number of oral cancer patients. To the population of oral cancer patients, India contributes to almost one-third of the total count. Among several types of oral cancer, the most common and dominant one is oral squamous cell carcinoma (OSCC). The major reason for oral cancer is tobacco consumption, excessive alcohol consumption, unhygienic mouth condition, betel quid eating, viral infection (namely human papillomavirus), etc. The early detection of oral cancer type OSCC, in its preliminary stage, gives more chances for better treatment and proper therapy. In this paper, author proposes a convolutional neural network model, for the automatic and early detection of OSCC, and for experimental purposes, histopathological oral cancer images are considered. The proposed model is compared and analyzed with state-of-the-art deep learning models like VGG16, VGG19, Alexnet, ResNet50, ResNet101, Mobile Net and Inception Net. The proposed model achieved a cross-validation accuracy of 97.82%, which indicates the suitability of the proposed approach for the automatic classification of oral cancer data.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas/epidemiología , Carcinoma de Células Escamosas de Cabeza y Cuello , Neoplasias de la Boca/epidemiología , Mucosa Bucal , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA