Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cell J ; 24(5): 215-221, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35717568

RESUMEN

Objective: Epigenetic alterations, including any change in DNA methylation pattern, could be the missing link of understanding radiation-induced genomic instability. Dapper, Dishevelled-associated antagonist of ß-catenin homolog 2 (DACT2) is a tumor suppressor gene regulating Wnt/ß-catenin. In hepatocellular carcinoma (HCC), DACT2 is hypermethylated, while methylation status of its promoter regulates the corresponding expression. Radionuclides have been used to reduce proliferation and induce apoptosis in cancerous cells. Epigenetic impact of radionuclides as therapeutic agents for treatment of HCC is still unknown. The aim of this study was to evaluate epigenetic impact of 188Rhenium perrhenate (188ReO4) on HCC cells. Materials and Methods: In this in vitro experimental study, HepG2 and Huh7 cells were treated with 188ReO4, receiving 55 and 73 Mega Becquerel (MBq) exposures, respectively. For cell viability measurement, live/dead staining was carried out 18, 24, and 48 hours post-exposure. mRNA expression level of ß-Catenin, Wnt1, DNMT1, DACT2 and WIF- 1 genes were quantified by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Then, possible regulatory impact of DACT2 upregulation was investigated through evaluating methylation-specific PCR (MS-PCR). Results: Results showed that viability of both cells was reduced after treatment with 188ReO4 at three time points postexposure compared to the control groups. The qRT-PCR results showed that DACT2 mRNA level was significantly increased at 24, and 48 hours post-exposure in HepG2 cells compared to the control group, while, no significant change was observed in Huh7 cells. Methylation pattern of DACT2 promoter remained unchanged in HepG2 and Huh7 cells. Conclusion: Treatment with 188ReO4 reduced viability of HepG2 and Huh7 cells. Although DACT2 expression was increased after 188ReO4 exposure in HepG2 cells, methylation pattern of its promoter remained unchanged. This study assessed impacts of the 188ReO4 ß-irradiation on expression and induction of DACT2 epigenetic aberrations as well as the correlation of this agent with viability of cells.

2.
Pharmacol Res ; 160: 105070, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32659429

RESUMEN

Targeted radionuclide therapy, known as molecular radiotherapy is a novel therapeutic module in cancer medicine. ß-radiating radionuclides have definite impact on target cells via interference in cell cycle and particular signalings that can lead to tumor regression with minimal off-target effects on the surrounding tissues. Radionuclides play a remarkable role not only in apoptosis induction and cell cycle arrest, but also in the amelioration of other characteristics of cancer cells. Recently, application of novel ß-radiating radionuclides in cancer therapy has been emerged as a promising therapeutic modality. Several investigations are ongoing to understand the underlying molecular mechanisms of ß-radiating elements in cancer medicine. Based on the radiation dose, exposure time and type of the ß-radiating element, different results could be achieved in cancer cells. It has been shown that ß-radiating radioisotopes block cancer cell proliferation by inducing apoptosis and cell cycle arrest. However, physical characteristics of the ß-radiating element (half-life, tissue penetration range, and maximum energy) and treatment protocol determine whether tumor cells undergo cell cycle arrest, apoptosis or both and to which extent. In this review, we highlighted novel therapeutic effects of ß-radiating radionuclides on cancer cells, particularly apoptosis induction and cell cycle arrest.


Asunto(s)
Partículas beta/uso terapéutico , Neoplasias/radioterapia , Radioisótopos/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de la radiación , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA