Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(24): 30819-30832, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38845592

RESUMEN

Sodium alginate (SA) biopolymeric films have various limitations such as poor mechanical properties, high vapor permeability, lack of antibacterial activity, excessive burst release, and weak cell adhesion. To overcome these limitations, a strategy involving the integration of nanofillers into an SA film matrix is explored. In this context, a cost-effective iron-containing carbon nano biocomposite (FeCNB) nanofiller is developed using a solvent-free technique. This nanocomposite is successfully incorporated into the alginate film matrix at varying concentrations (0.05, 0.1, and 0.15%) aimed at enhancing its physicochemical and biological properties for biomedical applications. Characterization through FESEM and BET analyses confirms the porous nature of the FeCNB. EDX shows the FeCNB's uniform distribution upon its integration into the film matrix, albeit without strong chemical interaction with SA. Instead, hydrogen bonding interactions become apparent in the FTIR spectra. By incorporating the FeCNB, the mechanical attributes of the films are improved and the water vapor permeability approaches the desired range (2000-2500 g/m2day). The film's swelling ratio reduction contributes to a decrease in water permeability. The antibacterial activity and sustained release property of the FeCNB-incorporated film are established using tetracycline hydrochloride (TCl), a model drug. The drug release profile resembled Korsmeyer-Peppas's release pattern. In vitro assessments via the MTT assay and scratch assay on NIH-3T3 cells reveal that FeCNB has no adverse effects on the biocompatibility of alginate films. The cell proliferation and adhesion to the SA film are significantly enhanced after infusion of the FeCNB. The in vivo study performed on the rat model demonstrates improved wound healing by FeCNB-impregnated films. Based on the comprehensive findings, the proposed FeCNB-incorporated alginate films prove to be a promising candidate for robust skin repair.


Asunto(s)
Alginatos , Antibacterianos , Hierro , Animales , Alginatos/química , Hierro/química , Antibacterianos/química , Antibacterianos/farmacología , Ratas , Piel/efectos de los fármacos , Nanocompuestos/química , Cicatrización de Heridas/efectos de los fármacos , Ratones , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Staphylococcus aureus/efectos de los fármacos , Permeabilidad , Tetraciclina/química , Tetraciclina/farmacología
2.
Fundam Clin Pharmacol ; 37(6): 1079-1091, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37474262

RESUMEN

BACKGROUND: Cancer cachexia is a debilitating syndrome associated with marked body loss because of muscular atrophy and fat loss. There are several mechanisms contributing to the pathogenesis of cachexia. The presence of the tumor releases cytokines from inflammatory and immune cells, which play a significant role in activating and deactivating certain pathways associated with protein, carbohydrate, and lipid metabolism. This review focuses on various cascades involving an imbalance between protein synthesis and degradation in the skeletal muscles. OBJECTIVES: This study aimed to elucidate the mechanisms involved in skeletal muscle wasting phenomenon over the last few years. METHODS: This article briefly overviews different pathways responsible for muscle atrophy in cancer cachexia. Studies published up to April 2023 were included. Important findings and study contributions were chosen and compiled using several databases including PubMed, Google Scholar, Science Direct, and ClinicalTrials.gov using relevant keywords. RESULTS: Cancer cachexia is a complex disease involving multiple factors resulting in atrophy of skeletal muscles. Systemic inflammation, altered energy balance and carbohydrate metabolism, altered lipid and protein metabolism, and adipose tissue browning are some of the major culprits in cancer cachexia. Increased protein degradation and decreased protein synthesis lead to muscle atrophy. Changes in signaling pathway like ubiquitin-proteasome, autophagy, mTOR, AMPK, and IGF-1 also lead to muscle wasting. Physical exercise, nutritional supplementation, steroids, myostatin inhibitors, and interventions targeting on inflammation have been investigated to treat cancer cachexia. Some therapy showed positive results in preclinical and clinical settings, although more research on the efficacy and safety of the treatment should be done. CONCLUSION: Muscle atrophy in cancer cachexia is the result of multiple complex mechanisms; as a result, a lot more research has been done to describe the pathophysiology of the disease. Targeted therapy and multimodal interventions can improve clinical outcomes for patients.


Asunto(s)
Caquexia , Neoplasias , Humanos , Caquexia/etiología , Caquexia/terapia , Caquexia/metabolismo , Neoplasias/complicaciones , Neoplasias/patología , Atrofia Muscular/etiología , Atrofia Muscular/terapia , Atrofia Muscular/metabolismo , Músculo Esquelético/metabolismo , Inflamación/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA