Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
World J Microbiol Biotechnol ; 37(7): 119, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34131813

RESUMEN

This research was carried out to investigate the differences in adhesion and growth during biofilm formation of L. monocytogenes from different sources and clonal complexes. Biofilm by L. monocytogenes (isolates CLIST 441 and 7: both lineage I, serotype 1/2b, CC3; isolates 19 and 508: both lineage II, serotype 1/2c, CC9) was grown on stainless steel coupons under different stressing conditions (NaCl, curing salts and quaternary ammonium compounds-QAC), to determine the expression of different genes involved in biofilm formation and stress response. CLIST 441, which carries a premature stop codon (PMSC) in agrC, formed high-density biofilms in the presence of QAC (7.5% w/v) or curing salts (10% w/v). Reverse Transcriptase-qPCR results revealed that L. monocytogenes isolates presented differences in transcriptional profile of genes related to biofilm formation and adaptation to environmental conditions. Our results demonstrated how L. monocytogenes can survive, multiply and form biofilm under adverse conditions related to food processing environments. Differences in transcriptional expression were observed, highlighting the role of regulatory gene networks for particular serotypes under different stress responses.


Asunto(s)
Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Medios de Cultivo/farmacología , Listeria monocytogenes/fisiología , Acero Inoxidable/química , Adhesión Bacteriana , Técnicas Bacteriológicas , Biopelículas/efectos de los fármacos , Medios de Cultivo/química , Microbiología de Alimentos , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/genética , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Cloruro de Sodio/química , Cloruro de Sodio/farmacología , Estrés Fisiológico
2.
Front Cell Infect Microbiol ; 10: 598938, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33262957

RESUMEN

Microbial communities infiltrate the respiratory tract of cystic fibrosis patients, where chronic colonization and infection lead to clinical decline. This report aims to provide an overview of the diversity of bacterial and fungal species from the airway secretion of three young CF patients with severe pulmonary disease. The bacterial and fungal microbiomes were investigated by culture isolation, metataxonomics, and metagenomics shotgun. Virulence factors and antibiotic resistance genes were also explored. A. fumigatus was isolated from cultures and identified in high incidence from patient sputum samples. Candida albicans, Penicillium sp., Hanseniaspora sp., Torulaspora delbrueckii, and Talaromyces amestolkiae were isolated sporadically. Metataxonomics and metagenomics detected fungal reads (Saccharomyces cerevisiae, A. fumigatus, and Schizophyllum sp.) in one sputum sample. The main pathogenic bacteria identified were Staphylococcus aureus, Pseudomonas aeruginosa, Burkholderia cepacia complex, and Achromobacter xylosoxidans. The canonical core CF microbiome is composed of species from the genera Streptococcus, Neisseria, Rothia, Prevotella, and Haemophilus. Thus, the airways of the three young CF patients presented dominant bacterial genera and interindividual variability in microbial community composition and diversity. Additionally, a wide diversity of virulence factors and antibiotic resistance genes were identified in the CF lung microbiomes, which may be linked to the clinical condition of the CF patients. Understanding the microbial community is crucial to improve therapy because it may have the opposite effect, restructuring the pathogenic microbiota. Future studies focusing on the influence of fungi on bacterial diversity and microbial interactions in CF microbiomes will be welcome to fulfill this huge gap of fungal influence on CF physiopathology.


Asunto(s)
Fibrosis Quística , Microbiota , Brasil , Fibrosis Quística/complicaciones , Humanos , Pulmón , Esputo , Talaromyces
3.
Microbiome ; 7(1): 126, 2019 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-31472697

RESUMEN

BACKGROUND: The microbiome has been implicated in the initiation and persistence of inflammatory bowel disease. Despite the fact that diet is one of the most potent modulators of microbiome composition and function and that dietary intervention is the first-line therapy for treating pediatric Crohn's disease, the relationships between diet-induced remission, enteropathy, and microbiome are poorly understood. Here, we leverage a naturally-occurring canine model of chronic inflammatory enteropathy that exhibits robust remission following nutritional therapy, to perform a longitudinal study that integrates clinical monitoring, 16S rRNA gene amplicon sequencing, metagenomic sequencing, metabolomic profiling, and whole genome sequencing to investigate the relationship between therapeutic diet, microbiome, and disease. RESULTS: We show that remission induced by a hydrolyzed protein diet is accompanied by alterations in microbial community structure marked by decreased abundance of pathobionts (e.g., Escherichia coli and Clostridium perfringens), reduced severity of dysbiosis, and increased levels of the secondary bile acids, lithocholic and deoxycholic acid. Physiologic levels of these bile acids inhibited the growth of E. coli and C. perfringens isolates, in vitro. Metagenomic analysis and whole genome sequencing identified the bile acid producer Clostridium hiranonis as elevated after dietary therapy and a likely source of secondary bile acids during remission. When C. hiranonis was administered to mice, levels of deoxycholic acid were preserved and pathology associated with DSS colitis was ameliorated. Finally, a closely related bile acid producer, Clostridium scindens, was associated with diet-induced remission in human pediatric Crohn's disease. CONCLUSIONS: These data highlight that remission induced by a hydrolyzed protein diet is associated with improved microbiota structure, an expansion of bile acid-producing clostridia, and increased levels of secondary bile acids. Our observations from clinical studies of exclusive enteral nutrition in human Crohn's disease, along with our in vitro inhibition assays and in vivo studies in mice, suggest that this may be a conserved response to diet therapy with the potential to ameliorate disease. These findings provide insight into diet-induced remission of gastrointestinal disease and could help guide the rational design of more effective therapeutic diets.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Enfermedad de Crohn/microbiología , Dietoterapia/métodos , Disbiosis , Microbioma Gastrointestinal , Animales , Niño , Clostridiales/metabolismo , Perros , Disbiosis/microbiología , Disbiosis/terapia , Humanos , Estudios Longitudinales , Masculino , Ratones , Ratones Endogámicos C57BL , Inducción de Remisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA