Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Cell Stem Cell ; 31(5): 676-693.e10, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38626772

RESUMEN

Frontotemporal dementia (FTD) is an incurable group of early-onset dementias that can be caused by the deposition of hyperphosphorylated tau in patient brains. However, the mechanisms leading to neurodegeneration remain largely unknown. Here, we combined single-cell analyses of FTD patient brains with a stem cell culture and transplantation model of FTD. We identified disease phenotypes in FTD neurons carrying the MAPT-N279K mutation, which were related to oxidative stress, oxidative phosphorylation, and neuroinflammation with an upregulation of the inflammation-associated protein osteopontin (OPN). Human FTD neurons survived less and elicited an increased microglial response after transplantation into the mouse forebrain, which we further characterized by single nucleus RNA sequencing of microdissected grafts. Notably, downregulation of OPN in engrafted FTD neurons resulted in improved engraftment and reduced microglial infiltration, indicating an immune-modulatory role of OPN in patient neurons, which may represent a potential therapeutic target in FTD.


Asunto(s)
Demencia Frontotemporal , Neuronas , Osteopontina , Proteínas tau , Osteopontina/metabolismo , Osteopontina/genética , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Demencia Frontotemporal/metabolismo , Humanos , Neuronas/metabolismo , Neuronas/patología , Animales , Proteínas tau/metabolismo , Ratones , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Microglía/metabolismo , Microglía/patología , Mutación/genética
2.
Clin Epigenetics ; 15(1): 197, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129913

RESUMEN

BACKGROUND: Lysine demethylase enzymes (KDMs) are an emerging class of therapeutic targets, that catalyse the removal of methyl marks from histone lysine residues regulating chromatin structure and gene expression. KDM4A isoform plays an important role in the epigenetic dysregulation in various cancers and is linked to aggressive disease and poor clinical outcomes. Despite several efforts, the KDM4 family lacks successful specific molecular inhibitors. RESULTS: Herein, starting from a structure-based fragments virtual screening campaign we developed a synergic framework as a guide to rationally design efficient KDM4A inhibitors. Commercial libraries were used to create a fragments collection and perform a virtual screening campaign combining docking and pharmacophore approaches. The most promising compounds were tested in-vitro by a Homogeneous Time-Resolved Fluorescence-based assay developed for identifying selective substrate-competitive inhibitors by means of inhibition of H3K9me3 peptide demethylation. 2-(methylcarbamoyl)isonicotinic acid was identified as a preliminary active fragment, displaying inhibition of KDM4A enzymatic activity. Its chemical exploration was deeply investigated by computational and experimental approaches which allowed a rational fragment growing process. The in-silico studies guided the development of derivatives designed as expansion of the primary fragment hit and provided further knowledge on the structure-activity relationship. CONCLUSIONS: Our study describes useful insights into key ligand-KDM4A protein interaction and provides structural features for the development of successful selective KDM4A inhibitors.


Asunto(s)
Histona Demetilasas con Dominio de Jumonji , Lisina , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Lisina/metabolismo , Metilación de ADN , Histonas/metabolismo , Relación Estructura-Actividad
3.
Cancers (Basel) ; 15(24)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38136365

RESUMEN

Immediate hypersensitivity reactions (iHSRs) to taxanes are observed in 6% and 4% of gynecologic and breast cancer patients, respectively. Drug desensitization is the only option, as no comparable alternative therapy is available. Surfactants in the taxane formulation have been implicated in the immunopathogenesis of iHSRs, although sporadic skin test (ST) positivity and iHSRs to nab-paclitaxel have suggested the involvement of the taxane moiety and/or IgE-mediated pathomechanisms. In vitro diagnostic tests might offer insights into mechanisms underlying iHSRs to taxanes. The aim of the present study was to address this unmet need by developing a novel basophil activation test (BAT). The study included patients (n = 31) undergoing paclitaxel/carboplatin therapy. Seventeen patients presented with iHSRs to paclitaxel (iHSR-Taxpos), and eleven were tolerant (iHSR-Taxneg). Fourteen patients presented with iHSRs to carboplatin (iHSR-Plpos), and fourteen were tolerant (iHSR-Plneg). The BAT median stimulation index (SI) values were 1.563 (range, 0.02-4.11; n = 11) and -0.28 (range -4.88-0.07, n = 11) in iHSR-Taxpos and iHSR-Taxneg, respectively. The BAT median SI values were 4.45 (range, 0.1-26.7; n = 14) and 0 (range, -0.51-1.65; n = 12) in iHSR-Plpos and iHSR-Plneg, respectively. SI levels were not associated with iHSR severity grading. Comparing BAT results in iHSR-Taxpos and iHSR-Taxneg showed the area under the receiver operator characteristic (ROC) curve to be 0.9752 (p = 0.0002). The cutoff calculated by the maximized likelihood ratio identified 90.91% of iHSR-Taxpos patients and 90.91% of iHSR-Taxneg patients. Comparing BAT results for iHSR-Plpos and iHSR-Plneg showed the area under the ROC curve to be 0.9286 (p = 0.0002). The cutoff calculated by the maximized likelihood ratio identified 78.57% of iHSR-Plpos patients and 91.67% of iHSR-Plneg patients. Most iHSR-Taxpos patients for which ST was available (10/11) scored ST-negative and BAT-positive, whereas most iHSR-Plpos patients for which ST was available (14/14) scored both BAT- and ST-positive. This suggested the intervention of non-IgE-mediated mechanisms in iHSR-Taxpos patients. Consistent with this view, an in silico molecular docking analysis predicted the high affinity of paclitaxel to the degranulation-competent MRGPRX2 receptor. This hypothesis warrants further in vitro investigations. In conclusion, the present study provides preliminary proof-of-concept evidence that this novel BAT has potential utility in understanding mechanisms underlying iHSRs to taxanes.

4.
Antioxidants (Basel) ; 12(2)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36829780

RESUMEN

A natural antioxidant, widely spread in plants, chlorogenic acid (CGA), can be lipophilized through a heterogeneous, non-enzymatic, catalytic process. Thus, sulfonic resins under no solvent conditions allow to obtain a series of esters in up to 93% yield through reaction of CGA with fatty alcohols of different chain length. The reaction takes place in one single step under mild conditions with conversions up to 96% and selectivity up to 99%. Product recovery in high purity was very easy and the esters obtained were fully characterized with spectroscopic techniques and through the DPPH test to verify the preservation of antioxidant activity. According to this test, all of them showed increased activity with respect to the parent acid and anyway higher than butylated hydroxyanisole. An in-silico method also suggested their very low toxicity. The increased lipophilicity of the esters allows their formulation in cosmetic and nutraceutic lipid-based products.

5.
Front Immunol ; 13: 845526, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35880176

RESUMEN

Aims: Human epicardial adipose tissue, a dynamic source of multiple bioactive factors, holds a close functional and anatomic relationship with the epicardial coronary arteries and communicates with the coronary artery wall through paracrine and vasocrine secretions. We explored the hypothesis that T-cell recruitment into epicardial adipose tissue (EAT) in patients with non-ST segment elevation myocardial infarction (NSTEMI) could be part of a specific antigen-driven response implicated in acute coronary syndrome onset and progression. Methods and Results: We enrolled 32 NSTEMI patients and 34 chronic coronary syndrome (CCS) patients undergoing coronary artery bypass grafting (CABG) and 12 mitral valve disease (MVD) patients undergoing surgery. We performed EAT proteome profiling on pooled specimens from three NSTEMI and three CCS patients. We performed T-cell receptor (TCR) spectratyping and CDR3 sequencing in EAT and peripheral blood mononuclear cells of 29 NSTEMI, 31 CCS, and 12 MVD patients. We then used computational modeling studies to predict interactions of the TCR beta chain variable region (TRBV) and explore sequence alignments. The EAT proteome profiling displayed a higher content of pro-inflammatory molecules (CD31, CHI3L1, CRP, EMPRINN, ENG, IL-17, IL-33, MMP-9, MPO, NGAL, RBP-4, RETN, VDB) in NSTEMI as compared to CCS (P < 0.0001). CDR3-beta spectratyping showed a TRBV21 enrichment in EAT of NSTEMI (12/29 patients; 41%) as compared with CCS (1/31 patients; 3%) and MVD (none) (ANOVA for trend P < 0.001). Of note, 11/12 (92%) NSTEMI patients with TRBV21 perturbation were at their first manifestation of ACS. Four patients with the first event shared a distinctive TRBV21-CDR3 sequence of 178 bp length and 2/4 were carriers of the human leukocyte antigen (HLA)-A*03:01 allele. A 3D analysis predicted the most likely epitope able to bind HLA-A3*01 and interact with the TRBV21-CDR3 sequence of 178 bp length, while the alignment results were consistent with microbial DNA sequences. Conclusions: Our study revealed a unique immune signature of the epicardial adipose tissue, which led to a 3D modeling of the TCRBV/peptide/HLA-A3 complex, in acute coronary syndrome patients at their first event, paving the way for epitope-driven therapeutic strategies.


Asunto(s)
Síndrome Coronario Agudo , Infarto del Miocardio sin Elevación del ST , Tejido Adiposo , Epítopos , Antígeno HLA-A3 , Humanos , Leucocitos Mononucleares , Proteoma , Linfocitos T
6.
J Med Chem ; 65(11): 7438-7475, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35604326

RESUMEN

The use of peptides as therapeutics has often been associated with several drawbacks such as poor absorption, low stability to proteolytic digestion, and fast clearance. Peptidomimetics are developed by modifications of native peptides with the aim of obtaining molecules that are more suitable for clinical development and, for this reason, are widely used as tools in medicinal chemistry programs. The effort to disclose innovative peptidomimetic therapies is recurrent and constantly evolving as demonstrated by the new lead compounds in clinical trials. Synthetic strategies for the development of peptidomimetics have also been implemented with time. This perspective highlights some of the most recent efforts for the design and synthesis of peptidomimetic agents together with their biological evaluation toward a panel of targets.


Asunto(s)
Peptidomiméticos , Química Farmacéutica , Péptidos/química , Peptidomiméticos/química
7.
JCI Insight ; 6(16)2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34283813

RESUMEN

Energy balance is controlled by interconnected brain regions in the hypothalamus, brainstem, cortex, and limbic system. Gene expression signatures of these regions can help elucidate the pathophysiology underlying obesity. RNA sequencing was conducted on P56 C57BL/6NTac male mice and E14.5 C57BL/6NTac embryo punch biopsies in 16 obesity-relevant brain regions. The expression of 190 known obesity-associated genes (monogenic, rare, and low-frequency coding variants; GWAS; syndromic) was analyzed in each anatomical region. Genes associated with these genetic categories of obesity had localized expression patterns across brain regions. Known monogenic obesity causal genes were highly enriched in the arcuate nucleus of the hypothalamus and developing hypothalamus. The obesity-associated genes clustered into distinct "modules" of similar expression profile, and these were distinct from expression modules formed by similar analysis with genes known to be associated with other disease phenotypes (type 1 and type 2 diabetes, autism, breast cancer) in the same energy balance-relevant brain regions.


Asunto(s)
Encéfalo/metabolismo , Metabolismo Energético/genética , Obesidad/metabolismo , Animales , Embrión de Mamíferos , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Masculino , Ratones , Obesidad/genética , RNA-Seq
8.
J Clin Invest ; 131(8)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33630762

RESUMEN

Bardet-Biedl syndrome (BBS) is a rare autosomal recessive disorder caused by mutations in genes encoding components of the primary cilium and is characterized by hyperphagic obesity. To investigate the molecular basis of obesity in human BBS, we developed a cellular model of BBS using induced pluripotent stem cell-derived (iPSC-derived) hypothalamic arcuate-like neurons. BBS mutations BBS1M390R and BBS10C91fsX95 did not affect neuronal differentiation efficiency but caused morphological defects, including impaired neurite outgrowth and longer primary cilia. Single-cell RNA sequencing of BBS1M390R hypothalamic neurons identified several downregulated pathways, including insulin and cAMP signaling and axon guidance. Additional studies demonstrated that BBS1M390R and BBS10C91fsX95 mutations impaired insulin signaling in both human fibroblasts and iPSC-derived neurons. Overexpression of intact BBS10 fully restored insulin signaling by restoring insulin receptor tyrosine phosphorylation in BBS10C91fsX95 neurons. Moreover, mutations in BBS1 and BBS10 impaired leptin-mediated p-STAT3 activation in iPSC-derived hypothalamic neurons. Correction of the BBS mutation by CRISPR rescued leptin signaling. POMC expression and neuropeptide production were decreased in BBS1M390R and BBS10C91fsX95 iPSC-derived hypothalamic neurons. In the aggregate, these data provide insights into the anatomic and functional mechanisms by which components of the BBSome in CNS primary cilia mediate effects on energy homeostasis.


Asunto(s)
Síndrome de Bardet-Biedl/metabolismo , Chaperoninas/metabolismo , Hipotálamo/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación Missense , Neuronas/metabolismo , Sistemas de Mensajero Secundario , Sustitución de Aminoácidos , Animales , Síndrome de Bardet-Biedl/genética , Chaperoninas/genética , AMP Cíclico/genética , AMP Cíclico/metabolismo , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/genética
9.
Mol Inform ; 40(2): e2000148, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32833314

RESUMEN

The Polycomb Repressive complex 2 (PRC2) maintains a repressive chromatin state and silences many genes, acting as methylase on histone tails. This enzyme was found overexpressed in many types of cancer. In this work, we have set up a Computer-Aided Drug Design approach based on the allosteric modulation of PRC2. In order to minimize the possible bias derived from using a single set of coordinates within the protein-ligand complex, a dynamic workflow was developed. In details, molecular dynamic was used as tool to identify the most significant ligand-protein interactions from several crystallized protein structures. The identified features were used for the creation of dynamic pharmacophore models and docking grid constraints for the design of new PRC2 allosteric modulators. Our protocol was retrospectively validated using a dataset of active and inactive compounds, and the results were compared to the classic approaches, through ROC curves and enrichment factor. Our approach suggested some important interaction features to be adopted for virtual screening performance improvement.


Asunto(s)
Sitio Alostérico , Sitios de Unión , Diseño de Fármacos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Complejo Represivo Polycomb 2/química , Humanos , Ligandos , Unión Proteica , Curva ROC
10.
J Exp Clin Cancer Res ; 39(1): 265, 2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33250051

RESUMEN

BACKGROUND: In spite of great progress in the surgical and clinical management, until now no significant improvement in overall survival of High-Grade Serous Ovarian Cancer (HGSOC) patients has been achieved. Important aspects for disease control remain unresolved, including unclear pathogenesis, high heterogeneity and relapse resistance after chemotherapy. Therefore, further research on molecular mechanisms involved in cancer progression are needed to find new targets for disease management. The Krüppel-like factors (KLFs) are a family of transcriptional regulators controlling several basic cellular processes, including proliferation, differentiation and migration. They have been shown to play a role in various cancer-relevant processes, in a context-dependent way. METHODS: To investigate a possible role of KLF family members as prognostic biomarkers, we carried out a bioinformatic meta-analysis of ovarian transcriptome datasets in different cohorts of late-stage HGSOC patients. In vitro cellular models of HGSOC were used for functional studies exploring the role of KLF7 in disease development and progression. Finally, molecular modelling and virtual screening were performed to identify putative KLF7 inhibitors. RESULTS: Bioinformatic analysis highlighted KLF7 as the most significant prognostic gene, among the 17 family members. Univariate and multivariate analyses identified KLF7 as an unfavourable prognostic marker for overall survival in late-stage TCGA-OV and GSE26712 HGSOC cohorts. Functional in vitro studies demonstrated that KLF7 can play a role as oncogene, driving tumour growth and dissemination. Mechanistic targets of KLF7 included genes involved in epithelial to mesenchymal transition, and in maintaining pluripotency and self-renewal characteristics of cancer stem cells. Finally, in silico analysis provided reliable information for drug-target interaction prediction. CONCLUSIONS: Results from the present study provide the first evidence for an oncogenic role of KLF7 in HGSOC, suggesting it as a promising prognostic marker and therapeutic target.


Asunto(s)
Cistadenocarcinoma Seroso/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Neoplasias Ováricas/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/metabolismo , Cistadenocarcinoma Seroso/diagnóstico , Cistadenocarcinoma Seroso/patología , Femenino , Humanos , Persona de Mediana Edad , Clasificación del Tumor , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/patología
11.
Expert Opin Pharmacother ; 21(1): 47-61, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31693423

RESUMEN

Introduction: The treatment of borderline personality disorder (BPD) remains an open question for clinicians. There is scarce evidence available and the guidelines' conclusions diverge. Together with these factors, the complexity of BPD generates uncertainty in day-to-day practice. This narrative review aims to provide an overview of advances in BPD treatment and posit a critical opinion based on clinical evidence and practice.Areas covered: The authors review the clinical trials concerning the efficacy of the main classes of drugs in BPD: antidepressants, mood stabilizers, first-, second-, and third-generation antipsychotics, and other agents (opiate antagonists, clonidine, oxytocin, omega-3 fatty acids). They also include in this review studies on combinations of drugs and psychotherapies.Expert opinion: An individualized, tailored pharmacotherapy for BPD that targets the prominent symptom clusters can improve relevant aspects of the clinical picture. However, no medication is indicated to treat the global psychopathology of BPD. Polypharmacy should be avoided or strictly limited. To date, pharmacotherapy alone does not suffice to manage the complexity of BPD. Combining medication with psychotherapy may improve specific BPD symptom dimensions. In particular, it may help those aspects that respond slowly or not at all to monotherapy.


Asunto(s)
Trastorno de Personalidad Limítrofe/terapia , Psicoterapia/métodos , Anticonvulsivantes/uso terapéutico , Antidepresivos/uso terapéutico , Antimaníacos/uso terapéutico , Antipsicóticos/uso terapéutico , Ácidos Grasos Omega-3/uso terapéutico , Humanos , Polifarmacia
12.
Cancers (Basel) ; 11(9)2019 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-31540122

RESUMEN

Simultaneous targeting of the prostate-specific membrane antigen (PSMA) and gastrin-releasing peptide receptor (GRPR) could improve the diagnostic accuracy in prostate cancer (PCa). The aim of this study was to develop a PSMA/GRPR-targeting bispecific heterodimer for SPECT and positron emission tomography (PET) diagnostic imaging of PCa. The heterodimer NOTA-DUPA-RM26 was produced by manual solid-phase peptide synthesis. NOTA-DUPA-RM26 was labeled with 111In and 68Ga, with yields >98%, and demonstrated a high stability and binding specificity to PSMA and GRPR. IC50 values for natIn-NOTA-DUPA-RM26 were 4 ± 1 nM towards GRPR and 824 ± 230 nM towards PSMA. An in vivo binding specificity 1 h pi of 111In-NOTA-DUPA-RM26 in PC3-PIP-xenografted mice demonstrated partially blockable tumor uptake when co-injected with an excess of PSMA- or GRPR-targeting agents. Simultaneous co-injection of both agents induced pronounced blocking. The biodistribution of 111In-NOTA-DUPA-RM26 and 68Ga-NOTA-DUPA-RM26 revealed fast activity clearance from the blood and normal organs via the kidneys. Tumor uptake exceeded normal organ uptake for both analogs 1 h pi. 68Ga-NOTA-DUPA-RM26 had a significantly lower tumor uptake (8 ± 2%ID/g) compared to 111In-NOTA-DUPA-RM26 (12 ± 2%ID/g) 1 h pi. Tumor-to-organ ratios increased 3 h pi, but decreased 24 h pi, for 111In-NOTA-DUPA-RM26. MicroPET/CT and microSPECT/CT scans confirmed biodistribution data, suggesting that 68Ga-NOTA-DUPA-RM26 and 111In-NOTA-DUPA-RM26 are suitable candidates for the imaging of GRPR and PSMA expression in PCa shortly after administration.

13.
Sci Rep ; 8(1): 16047, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30375481

RESUMEN

The NIMA (never in mitosis, gene A)-related kinase-6 (NEK6), which is implicated in cell cycle control and plays significant roles in tumorigenesis, is an attractive target for the development of novel anti-cancer drugs. Here we describe the discovery of a potent ATP site-directed inhibitor of NEK6 identified by virtual screening, adopting both structure- and ligand-based techniques. Using a homology-built model of NEK6 as well as the pharmacophoric features of known NEK6 inhibitors we identified novel binding scaffolds. Twenty-five compounds from the top ranking hits were subjected to in vitro kinase assays. The best compound, i.e. compound 8 ((5Z)-2-hydroxy-4-methyl-6-oxo-5-[(5-phenylfuran-2-yl)methylidene]-5,6-dihydropyridine-3-carbonitrile), was able to inhibit NEK6 with low micromolar IC50 value, also displaying antiproliferative activity against a panel of human cancer cell lines. Our results suggest that the identified inhibitor can be used as lead candidate for the development of novel anti-cancer agents, thus opening the possibility of new therapeutic strategies.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Descubrimiento de Drogas , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Secuencia de Aminoácidos , Sitios de Unión , Línea Celular Tumoral , Descubrimiento de Drogas/métodos , Activación Enzimática , Humanos , Concentración 50 Inhibidora , Ligandos , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Quinasas Relacionadas con NIMA/antagonistas & inhibidores , Quinasas Relacionadas con NIMA/química , Quinasas Relacionadas con NIMA/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad
14.
Int J Cardiol ; 270: 149-153, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29980368

RESUMEN

PURPOSE: Benefit of cardiac pacing in patients with vasovagal syncope (VVS) and cardioinhibitory response to head-up tilt test (HUTT) is still debated. We aimed at retrospectively assessing the long-term effect of cardiac pacing in a cohort routinely followed in our institutions. METHODS AND RESULTS: From a cohort of 1502 patients who performed HUTT between 2008 and 2014, 181 (12%) patients had VASIS 2A (40) or 2B (141) response (median age 43 [interquartile range, 25-56] years, 59% male). Fifty patients (28%) received a dual-chamber pacemaker and 131 (72%) received training on physical maneuvers and medical therapy. The so-called 'Closed Loop Stimulation' (CLS) function was activated for at least 18 months in the pacing group. The 5-year recurrence rate of syncope of paced patients was compared with non-paced patients and with a subgroup of 18 propensity-score matched patients selected among non-paced patients. The 5-year Kaplan-Meier syncope free-rate was 81% (CI, 67%-90%) in the pacing group, 57% (47%-67%; p = 0.004) in the unmatched control group, 53% (27%-74%; p = 0.005) in the 18 propensity-matched patients. The hazard ratio of pacing versus non-pacing was 0.34 (CI, 0.18-0.70) when comparing with the whole non-pacing control group, and 0.25 (CI, 0.09-0.65) including only the propensity-score matched subgroup. No deaths were observed during the follow-up. CONCLUSIONS: In the selected VVS population with HUTT-induced cardioinhibitory response, pacemaker therapy with CLS function was associated to 66% relative and 24% absolute risk reduction of 5-year syncopal recurrence rate. Benefit was confirmed after controlling variables affecting propensity for pacemaker therapy.


Asunto(s)
Estimulación Cardíaca Artificial/tendencias , Bases de Datos Factuales , Síncope Vasovagal/fisiopatología , Síncope Vasovagal/terapia , Pruebas de Mesa Inclinada/tendencias , Adulto , Estimulación Cardíaca Artificial/métodos , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Recurrencia , Estudios Retrospectivos , Síncope Vasovagal/diagnóstico , Pruebas de Mesa Inclinada/métodos , Resultado del Tratamiento
15.
PLoS One ; 13(5): e0197548, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29847571

RESUMEN

We have previously reported that Ildr2 knockdown via adenovirally-delivered shRNA causes hepatic steatosis in mice. In the present study we investigated hepatic biochemical and anatomic phenotypes of Cre-mediated Ildr2 knock-out mice. Liver-specific Ildr2 knock-out mice were generated in C57BL/6J mice segregating for a floxed (exon 1) allele of Ildr2, using congenital and acute (10-13-week-old male mice) Cre expression. In addition, Ildr2 shRNA was administered to Ildr2 knock-out mice to test the effects of Ildr2 shRNA, per se, in the absence of Ildr2 expression. RNA sequencing was performed on livers of these knockdown and knockout mice. Congenital and acute liver-specific and hepatocyte-specific knockout mice did not develop hepatic steatosis. However, administration of Ildr2 shRNA to Ildr2 knock-out mice did cause hepatic steatosis, indicating that the Ildr2 shRNA had apparent "off-target" effects on gene(s) other than Ildr2. RNA sequencing and BLAST sequence alignment revealed Dgka as a candidate gene mediating these "off-target" effects. Ildr2 shRNA is 63% homologous to the Dgka gene, and Dgka expression decreased only in mice displaying hepatic steatosis. Dgka encodes diacylglycerol kinase (DGK) alpha, one of a family of DGKs which convert diacylglycerides to phosphatidic acid for second messenger signaling. Dgka knockdown mice would be expected to accumulate diacylglyceride, contributing to the observed hepatic steatosis. We conclude that ILDR2 plays a negligible role in hepatic steatosis. Rather, hepatic steatosis observed previously in Ildr2 knockdown mice was likely due to shRNA targeting of Dgka and/or other "off-target" genes. We propose that the gene candidates identified in this follow-up study may lead to identification of novel regulators of hepatic lipid metabolism.


Asunto(s)
Proteínas de la Membrana/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Diacilglicerol Quinasa/genética , Diacilglicerol Quinasa/metabolismo , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Hepatocitos/metabolismo , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/patología , ARN Interferente Pequeño/genética , Análisis de Secuencia de ARN , Triglicéridos/metabolismo
16.
Bioorg Med Chem ; 25(19): 5095-5106, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28185725

RESUMEN

Herein, new ligands for the vesicular acetylcholine transporter (VAChT), based on a benzovesamicol scaffold, are presented. VAChT is acknowledged as a marker for cholinergic neurons and a positron emission tomography tracer for VAChT could serve as a tool for quantitative analysis of cholinergic neuronal density. With an easily accessible triflate precursor, aminocarbonylations were utilized to evaluate the chemical space around the C5 position on the tetrahydronaphthol ring. Synthesized ligands were evaluated for their affinity and selectivity for VAChT. Small, preferably aromatic, N-substituents proved to be more potent than larger substituents. Of the fifteen compounds synthesized, benzyl derivatives (±)-7i and (±)-7l had the highest affinities for VAChT. Compound (±)-7i was chosen to investigate the importance of stereochemistry for binding to VAChT and selectivity toward the σ1 and σ2 receptors. Enantiomeric resolution gave (+)-7i and (-)-7i, and the eutomer showed seven times better affinity. Although racemate (±)-7i was initially promising, the affinity of (-)-7i for VAChT was not better than 56.7nM which precludes further preclinical evaluation. However, the nanomolar binding together with the ready synthesis of [11C]-(±)-7i shows that (-)-7i can serve as a scaffold for future optimizations to provide improved 11C-labelled VAChT PET tracers.


Asunto(s)
Amidas/química , Radioisótopos de Carbono/química , Piperidinas/química , Tomografía de Emisión de Positrones/métodos , Proteínas de Transporte Vesicular de Acetilcolina/análisis , Amidas/síntesis química , Animales , Humanos , Ligandos , Células PC12 , Piperidinas/síntesis química , Ratas
17.
Bioorg Med Chem ; 25(3): 897-911, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28038943

RESUMEN

Type I signal peptidases are potential targets for the development of new antibacterial agents. Here we report finding potent inhibitors of E. coli type I signal peptidase (LepB), by optimizing a previously reported hit compound, decanoyl-PTANA-CHO, through modifications at the N- and C-termini. Good improvements of inhibitory potency were obtained, with IC50s in the low nanomolar range. The best inhibitors also showed good antimicrobial activity, with MICs in the low µg/mL range for several bacterial species. The selection of resistant mutants provided strong support for LepB as the target of these compounds. The cytotoxicity and hemolytic profiles of these compounds are not optimal but the finding that minor structural changes cause the large effects on these properties suggests that there is potential for optimization in future studies.


Asunto(s)
Diseño de Fármacos , Escherichia coli/enzimología , Proteínas de la Membrana/antagonistas & inhibidores , Oligopéptidos/farmacología , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células Hep G2 , Humanos , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Estructura Molecular , Oligopéptidos/síntesis química , Oligopéptidos/química , Serina Endopeptidasas/metabolismo , Relación Estructura-Actividad
18.
Biopolymers ; 106(5): 714-25, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27272460

RESUMEN

Human saliva contains hundreds of small proline-rich peptides originated by the proteolytic cleavage of the salivary basic Proline-Rich Proteins. Nevertheless only for few of them a specific biological activity has been assigned to date. Among them, the 1932 Da peptide (p1932) has been patented as an anti-HIV agent. In order to shed light on the possible mechanism of action of this peptide, we assessed in this study, by means of molecular dynamics calculations, circular dichroism and FTIR spectroscopic techniques, that p1932 has an intrinsic propensity to adopt a polyproline-II helix arrangement. This structural feature combined with the presence of PxxP motifs in its primary structure, represents an essential property for the exploitation of several biological activities. Next to these findings, we recently demonstrated the ability of this peptide to be internalized within cells of the oral mucosa, thus we focused onto a possible intracellular target, represented by the SH3 domains family. Its ability to interact with selected SH3 domains was finally assayed by Surface Plasmon Resonance spectroscopy. As a result, only Fyn, Hck, and c-Src SH3 domains gave positive results in terms of interaction, showing dissociation constants ranging from nanomolar to micromolar values having the best performer a KD of 148 nM. It is noteworthy that all the interacting domains belong to the Src kinases family, suggesting a role for p1932 as a modulator of the signal transduction pathways mediated by these kinases. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 714-725, 2016.


Asunto(s)
Fármacos Anti-VIH/química , Péptidos Catiónicos Antimicrobianos/química , Simulación de Dinámica Molecular , Proteínas Salivales Ricas en Prolina/química , Dominios Homologos src , Humanos , Resonancia por Plasmón de Superficie
19.
J Immunol ; 196(1): 407-15, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26582950

RESUMEN

The cytokine IL-1ß is intimately linked to many pathological inflammatory conditions. Mature IL-1ß secretion requires cleavage by the inflammasome. Recent evidence indicates that many cell death signal adaptors have regulatory roles in inflammasome activity. These include the apoptosis inducers FADD and caspase 8, and the necroptosis kinases receptor interacting protein kinase 1 (RIPK1) and RIPK3. PGAM5 is a mitochondrial phosphatase that has been reported to function downstream of RIPK3 to promote necroptosis and IL-1ß secretion. To interrogate the biological function of PGAM5, we generated Pgam5(-/-) mice. We found that Pgam5(-/-) mice were smaller compared with wild type littermates, and male Pgam5(-/-) mice were born at sub-Mendelian ratio. Despite these growth and survival defects, Pgam5(-/-) cells responded normally to multiple inducers of apoptosis and necroptosis. Rather, we found that PGAM5 is critical for IL-1ß secretion in response to NLRP3 and AIM2 inflammasome agonists. Moreover, vesicular stomatosis virus-induced IL-1ß secretion was impaired in Pgam5(-/-) bone marrow-derived macrophages, but not in Ripk3(-/-) bone marrow-derived dendritic cells, indicating that PGAM5 functions independent of RIPK3 to promote inflammasome activation. Mechanistically, PGAM5 promotes ASC polymerization, maintenance of mitochondrial integrity, and optimal reactive oxygen species production in response to inflammasome signals. Hence PGAM5 is a novel regulator of inflammasome and caspase 1 activity that functions independently of RIPK3.


Asunto(s)
Apoptosis/inmunología , Inflamasomas/inmunología , Interleucina-1beta/metabolismo , Macrófagos/inmunología , Monoéster Fosfórico Hidrolasas/genética , Animales , Proteínas Portadoras/inmunología , Caspasa 1/inmunología , Caspasa 8/inmunología , Células Cultivadas , Proteínas de Unión al ADN/inmunología , Células Dendríticas/inmunología , Proteína de Dominio de Muerte Asociada a Fas/inmunología , Inflamación/inmunología , Interleucina-1beta/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/inmunología , Mitocondrias/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR , Fosfoproteínas Fosfatasas , Monoéster Fosfórico Hidrolasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/inmunología , Transducción de Señal/inmunología , Virus de la Estomatitis Vesicular Indiana/inmunología
20.
J Cell Physiol ; 230(9): 2059-66, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25639214

RESUMEN

Serum composition is linked to metabolic diseases not only to understand their pathogenesis but also for diagnostic purposes. Quality and quantity of nutritional intake can affect disease risk and serum composition. It is then possible that diet derived serum components directly affect pathogenetic mechanisms. To identify involved factors, we evaluated the effect on gene expression of direct addition of dyslipidemic human serum samples to cultured human hepatoma cells (HepG2). Sera were selected on the basis of cholesterol level, considering this parameter as mostly linked to dietary intake. Cells were treated with 32 sera from hypercholesterolemic and normocholesterolemic subjects to identify differentially regulated mRNAs using DNA microarray analysis. We identified several mRNAs with the highest modulations in cells treated with dyslipidemic sera versus cells treated with normal sera. Since the two serum groups had variable polyunsaturated fatty acids (PUFAs) contents, selected mRNAs were further assessed for their regulation by docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and arachidonic acid (AA). Four genes resulted both affected by serum composition and PUFAs: 3-hydroxy-3-methylglutaryl-CoenzymeA synthase 2 (HMGCS2), glutathione S-transferase alpha 1 (GSTA1), liver expressed antimicrobial peptide 2 (LEAP2) and apolipoprotein M (ApoM). HMGCS2 expression appears the most relevant and was also found modulated via transcription factors peroxysome proliferator activated receptor α (PPARα) and forkhead box O1 (FoxO1). Our data indicate that expression levels of the selected mRNAs, primarily of HMGCS2, could represent a reference of nutritional intake, PUFAs effects and dyslipidemic diseases pathogenesis.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Dislipidemias/sangre , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Hepáticas/tratamiento farmacológico , Suero/metabolismo , Péptidos Catiónicos Antimicrobianos/biosíntesis , Apolipoproteínas/biosíntesis , Apolipoproteínas M , Ácido Araquidónico/administración & dosificación , Proteínas Sanguíneas/biosíntesis , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Ácidos Docosahexaenoicos/administración & dosificación , Dislipidemias/metabolismo , Ácido Eicosapentaenoico/administración & dosificación , Glutatión Transferasa/biosíntesis , Células Hep G2 , Humanos , Hidroximetilglutaril-CoA Sintasa/biosíntesis , Lipocalinas/biosíntesis , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Suero/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA