Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Neurosci ; 38(5): 1249-1263, 2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29263236

RESUMEN

Gonadotropin-releasing hormone (GnRH) neurons produce the central output controlling fertility and are regulated by steroid feedback. A switch from estradiol negative to positive feedback initiates the GnRH surge, ultimately triggering ovulation. This occurs on a daily basis in ovariectomized, estradiol-treated (OVX+E) mice; GnRH neurons are suppressed in the morning and activated in the afternoon. To test the hypotheses that estradiol and time of day signals alter GnRH neuron responsiveness to stimuli, GFP-identified GnRH neurons in brain slices from OVX+E or OVX female mice were recorded during the morning or afternoon. No differences were observed in baseline membrane potential. Current-clamp revealed GnRH neurons fired more action potentials in response to current injection during positive feedback relative to all other groups, which were not different from each other despite reports of differing ionic conductances. Kisspeptin increased GnRH neuron response in cells from OVX and OVX+E mice in the morning but not afternoon. Paradoxically, excitability in kisspeptin knock-out mice was similar to the maximum observed in control mice but was unchanged by time of day or estradiol. A mathematical model applying a Markov Chain Monte Carlo method to estimate probability distributions for estradiol- and time of day-dependent parameters was used to predict intrinsic properties underlying excitability changes. A single identifiable distribution of solutions accounted for similar GnRH neuron excitability in all groups other than positive feedback despite different underlying conductance properties; this was attributable to interdependence of voltage-gated potassium channel properties. In contrast, redundant solutions may explain positive feedback, perhaps indicative of the importance of this state for species survival.SIGNIFICANCE STATEMENT Infertility affects 15%-20% of couples; failure to ovulate is a common cause. Understanding how the brain controls ovulation is critical for new developments in both infertility treatment and contraception. Gonadotropin-releasing hormone (GnRH) neurons are the final common pathway for central neural control of ovulation. We studied how estradiol feedback regulates GnRH excitability, a key determinant of neural firing rate using laboratory and computational approaches. GnRH excitability is upregulated during positive feedback, perhaps driving increased neural firing rate at this time. Kisspeptin increased GnRH excitability and was essential for estradiol regulation of excitability. Modeling predicts that multiple combinations of changes to GnRH intrinsic conductances can produce the firing response in positive feedback, suggesting the brain has many ways to induce ovulation.


Asunto(s)
Estradiol/fisiología , Hormona Liberadora de Gonadotropina/fisiología , Kisspeptinas/fisiología , Neuronas/fisiología , Potenciales de Acción/fisiología , Animales , Retroalimentación Fisiológica/fisiología , Femenino , Kisspeptinas/genética , Cadenas de Markov , Potenciales de la Membrana/fisiología , Ratones , Ratones Noqueados , Modelos Neurológicos , Modelos Teóricos , Método de Montecarlo , Conducción Nerviosa/efectos de los fármacos , Ovariectomía , Técnicas de Placa-Clamp
2.
eNeuro ; 3(3)2016.
Artículo en Inglés | MEDLINE | ID: mdl-27280155

RESUMEN

The preovulatory secretory surge of gonadotropin-releasing hormone (GnRH) is crucial for fertility and is regulated by a switch of estradiol feedback action from negative to positive. GnRH neurons likely receive estradiol feedback signals via ERα-expressing afferents. Kisspeptin neurons in anteroventral periventricular nucleus (AVPV) are thought to be critical for estradiol-positive feedback induction of the GnRH surge. We examined the electrophysiological properties of GFP-identified AVPV kisspeptin neurons in brain slices from mice on the afternoon of diestrus (negative feedback) and proestrus (positive feedback, time of surge). Extracellular recordings revealed increased firing frequency and action potential bursts on proestrus versus diestrus. Whole-cell recordings were used to study the intrinsic mechanisms of bursting. Upon depolarization, AVPV kisspeptin neurons exhibited tonic firing or depolarization-induced bursts (DIB). Both tonic and DIB cells exhibited bursts induced by rebound from hyperpolarization. DIB occurred similarly on both cycle stages, but rebound bursts were observed more often on proestrus. DIB and rebound bursts were both sensitive to Ni(2+), suggesting that T-type Ca(2+) currents (I Ts) are involved. I T current density was greater on proestrus versus diestrus. In addition to I T, persistent sodium current (I NaP) facilitated rebound bursting. On diestrus, 4-aminopyridine-sensitive potassium currents contributed to reduced rebound bursts in both tonic and DIB cells. Manipulation of specific sex steroids suggests that estradiol induces the changes that enhance AVPV kisspeptin neuron excitability on proestrus. These observations indicate cycle-driven changes in circulating estradiol increased overall action potential generation and burst firing in AVPV kisspeptin neurons on proestrus versus diestrus by regulating multiple intrinsic currents.


Asunto(s)
Estradiol/metabolismo , Ciclo Estral/fisiología , Hipotálamo Anterior/metabolismo , Kisspeptinas/metabolismo , Neuronas/metabolismo , Animales , Canales de Calcio Tipo T/metabolismo , Estradiol/administración & dosificación , Femenino , Hipotálamo Anterior/efectos de los fármacos , Kisspeptinas/genética , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neurotransmisores/farmacología , Ovariectomía , Técnicas de Placa-Clamp , Canales de Potasio/metabolismo , Progesterona/administración & dosificación , Progesterona/metabolismo , Canales de Sodio/metabolismo , Técnicas de Cultivo de Tejidos
3.
J Neurosci ; 34(49): 16296-308, 2014 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-25471569

RESUMEN

Gonadotropin-releasing hormone (GnRH) secretion is regulated by estradiol feedback. This feedback switches from negative to positive in females; this switch depends on time of day in many species. Estradiol feedback is likely conveyed via afferents. Kisspeptin neurons of the arcuate nucleus and anteroventral-periventricular region (AVPV) may differentially regulate GnRH neurons during negative and positive feedback, respectively. We tested estradiol and time of day regulation of GABAergic transmission and postsynaptic response to GABA in these two populations using transgenic mice with GFP-identified kisspeptin neurons. Ovariectomized (OVX) mice treated or not with estradiol (E) were studied in the AM (negative feedback) or PM (positive feedback). GABAA receptor reversal potential was unaffected by time of day or estradiol. GABA depolarized the membrane potential of arcuate neurons from OVX+E mice; this response was blunted in cells from OVX mice. GABA hyperpolarized AVPV kisspeptin neurons, except in the OVX PM group in which GABA did not alter membrane potential attributable to a PM hyperpolarization of baseline membrane potential. In both kisspeptin neuron populations from OVX mice, the frequency of GABAergic spontaneous postsynaptic currents was increased in the PM; this increase was blunted by estradiol. In arcuate, but not AVPV, kisspeptin neurons, estradiol reduced miniature postsynaptic current amplitude independent of time of day. Using nonstationary fluctuation analysis and diazepam to manipulate GABAA receptor apparent affinity, the decrease in arcuate miniature postsynaptic current amplitude was attributed to decreased number of receptors bound by GABA. Time of day and estradiol feedback thus both target presynaptic and postsynaptic mechanisms to differentially regulate kisspeptin neurons via GABAergic transmission.


Asunto(s)
Núcleo Arqueado del Hipotálamo/fisiología , Estradiol/fisiología , Neuronas GABAérgicas/fisiología , Hipotálamo Anterior/fisiología , Kisspeptinas/fisiología , Animales , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Diazepam/farmacología , Estradiol/farmacología , Femenino , Neuronas GABAérgicas/efectos de los fármacos , Hipotálamo Anterior/efectos de los fármacos , Kisspeptinas/genética , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Ratones Transgénicos , Microinyecciones , Neuronas/efectos de los fármacos , Neuronas/fisiología , Receptores de GABA-A/fisiología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Factores de Tiempo , Ácido gamma-Aminobutírico/administración & dosificación , Ácido gamma-Aminobutírico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA