Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Pharm Sci ; 111(7): 1868-1878, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35351496

RESUMEN

Gene therapies delivered using adeno-associated virus (AAV) vectors are showing promise for many diseases. Frozen AAV drug products are exposed to freeze-thaw (F/T) cycles during manufacturing, storage, and distribution. In this work we studied the mechanisms of AAV capsid rupture during F/T. We found that exposure to interfaces, exacerbated by F/T, and the mechanical force of excipient devitrification correlated with AAV capsid rupture during F/T. There was no impact of pH shifts, cryo-concentration, or cold-denaturation. Results were similar for AAV8 and AAV9. With these mechanistic insights we identified three formulation mitigation approaches. Addition of ≥0.0005% w/v poloxamer 188 (P188) eliminated substantial recovery losses (up to ∼60% without P188) and minimized rupture to ≤1% per F/T cycle. Elimination of exothermic devitrification events during rewarming, either by formulating with a low buffer concentration, or by adding a cryoprotectant further reduced rupture during F/T. Rupture of AAV9 was <0.2% per F/T cycle in a formulation with 1 mM phosphate, 4.4 mM dextrose, electrolytes, and 0.001% P188 at pH 7.2. Rupture of AAV8 was not detected when formulated with 4% sucrose, 100 mM salt, and 0.001% P188 at pH 7.4. These results provide insights into effective strategies for stabilizing AAVs against rupture during F/T.


Asunto(s)
Cápside , Dependovirus , Proteínas de la Cápside/genética , Dependovirus/genética , Congelación , Vectores Genéticos
2.
Int J Pharm ; 606: 120912, 2021 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-34298099

RESUMEN

Adeno-associated viruses (AAV) are among the most actively investigated vectors for gene therapy. Supply of early clinical studies with frozen drug product (DP) can accelerate timelines and minimize degradation risks. In the long-term, logistical challenges of frozen DP may limit patient access. In this work, we developed a lyophilized (freeze-dried) formulation of AAV. The mass concentration of AAV is typically low, and AAV also requires a minimum ionic strength to inhibit aggregation. These factors result in a low collapse temperature, which is limiting to lyophilization. Mannitol crystallization was found to cause extensive degradation and potency loss of AAV during the freezing step. With further development, we determined that AAV could be lyophilized in a sucrose and citrate formulation with a more desirable high glass transition temperature of the dried cake. An optimal residual moisture range (1-3%) was found to be critical to maintaining AAV8 stability. Glycerol was found to protect AAV8 from over-drying by preventing capsid damage and genome DNA release. A lyophilized formulation was identified that maintained potency for 24 months at 2-8 °C, indicating the feasibility of a dried formulation for AAV gene therapy.


Asunto(s)
Química Farmacéutica , Dependovirus , Cristalización , Dependovirus/genética , Estabilidad de Medicamentos , Liofilización , Terapia Genética , Humanos
3.
J Pharm Sci ; 110(9): 3183-3187, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34107283

RESUMEN

Adeno-associated virus (AAV) vectors for gene therapy have potential to provide a durable treatment response for a number of diseases with unmet need. DNA is released from AAV capsids at high temperatures. Less is known about DNA release that may occur under conditions relevant to clinical and commercial manufacturing, storage, and distribution. In this work we developed and applied a sensitive fluorescent dye-based method to quantitate trace levels of DNA released from AAV capsids. The method was used to characterize the impact of manufacturing process steps on the increase (up to 1.5%) and removal (down to 0.2%) of free DNA. Free DNA increased by 0.3% per day at 37 °C and by 0.4% per freeze/thaw cycle in a phosphate-buffered saline formulation. When stored for 2 years at different temperatures, free DNA remained low (<0.6%) at both ≤ -60 °C and at 2-8 °C but was higher (2.6%) when the same sample was stored at -20 °C. The dye-based method may be used to further characterize release of free DNA for different processes, formulations, and stress conditions. Overall, release of free DNA was a relatively minor degradation pathway under the conditions studied in this work.


Asunto(s)
Dependovirus , Vectores Genéticos , ADN/genética , Dependovirus/genética , Congelación , Terapia Genética
4.
Vaccine ; 23(31): 4029-35, 2005 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-15963360

RESUMEN

Heavy chain fragments of botulinum neurotoxin serotypes A and B are being developed as a bivalent vaccine for botulism. To potentiate the immune response, an aluminum containing adjuvant will be formulated with the two antigens. The adsorption mechanisms of each antigen to aluminum phosphate and aluminum hydroxide adjuvants were studied. The adsorption of the serotype A antigen to each adjuvant, and the serotype B antigen to aluminum phosphate adjuvant, is dependent on electrostatic attractive forces. The serotype A antigen is basic, and pretreatment with phosphate anions is required for favorable adsorption conditions to aluminum hydroxide adjuvant. In contrast, the serotype B antigen displays a high affinity to aluminum hydroxide adjuvant even when the two species possess the same charge. It is proposed that the serotype B antigen is adsorbed to aluminum hydroxide adjuvant by a ligand exchange mechanism.


Asunto(s)
Adyuvantes Inmunológicos/química , Compuestos de Aluminio/química , Hidróxido de Aluminio/química , Vacunas Bacterianas/química , Toxinas Botulínicas/química , Fosfatos/química , Adsorción , Vacunas Bacterianas/inmunología , Toxinas Botulínicas/inmunología , Toxinas Botulínicas Tipo A/inmunología , Clostridium botulinum/inmunología , Glicol de Etileno/química , Concentración de Iones de Hidrógeno , Modelos Moleculares , Fragmentos de Péptidos , Conformación Proteica , Cloruro de Sodio/química , Vacunas de Subunidad/química , Vacunas de Subunidad/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA