Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Stem Cells Dev ; 22(18): 2497-507, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23614555

RESUMEN

Mesenchymal stem cell (MSC) transplantation after ischemia/reperfusion (I/R) injury reduces infarct size and improves cardiac function. We used mouse ventricular myocytes (VMs) in an in vitro model of I/R to determine the mechanism by which MSCs prevent reperfusion injury by paracrine signaling. Exposure of mouse VMs to an ischemic challenge depolarized their mitochondrial membrane potential (Ψmito), increased their diastolic Ca(2+), and significantly attenuated cell shortening. Reperfusion of VMs with Ctrl tyrode or MSC-conditioned tyrode (ConT) resulted in a transient increase of the Ca(2+) transient amplitudes in all cells. ConT-reperfused cells exhibited a decreased number early after depolarization (EADs) (ConT: 6.3% vs. Ctrl: 28.4%) and prolonged survival (ConT: 58% vs. Ctrl: 33%). Ψmito rapidly recovered in Ctrl as well as ConT-treated VMs on reperfusion; however, in Ctrl solution, an exaggerated hyperpolarization of Ψmito was determined that preceded the collapse of Ψmito. The ability of ConT to attenuate the hyperpolarization of Ψmito was suppressed on inhibition of the PI3K/Akt signaling pathway or IK,ATP. However, protection of Ψmito was best mimicked by the reactive oxygen species (ROS) scavenger mitoTEMPO. Analysis of ConT revealed a significant antioxidant capacity that was linked to the presence of extracellular superoxide dismutase (SOD3) in ConT. In conclusion, MSC ConT protects VMs from simulated I/R injury by its SOD3-mediated antioxidant capacity and by delaying the recovery of Ψmito through Akt-mediated opening of IK,ATP. These changes attenuate reperfusion-induced ROS production and prevent the opening of the permeability transition pore and arrhythmic Ca(2+) release.


Asunto(s)
Antioxidantes/metabolismo , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/terapia , Superóxido Dismutasa/metabolismo , Animales , Células de la Médula Ósea/metabolismo , Calcio/metabolismo , Tamaño de la Célula , Supervivencia Celular , Células Cultivadas , Soluciones Isotónicas/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Compuestos Organofosforados/metabolismo , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Piperidinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
2.
J Cell Biol ; 184(6): 923-33, 2009 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-19307602

RESUMEN

The insulin IGF-1-PI3K-Akt signaling pathway has been suggested to improve cardiac inotropism and increase Ca(2+) handling through the effects of the protein kinase Akt. However, the underlying molecular mechanisms remain largely unknown. In this study, we provide evidence for an unanticipated regulatory function of Akt controlling L-type Ca(2+) channel (LTCC) protein density. The pore-forming channel subunit Ca(v)alpha1 contains highly conserved PEST sequences (signals for rapid protein degradation), and in-frame deletion of these PEST sequences results in increased Ca(v)alpha1 protein levels. Our findings show that Akt-dependent phosphorylation of Ca(v)beta2, the LTCC chaperone for Ca(v)alpha1, antagonizes Ca(v)alpha1 protein degradation by preventing Ca(v)alpha1 PEST sequence recognition, leading to increased LTCC density and the consequent modulation of Ca(2+) channel function. This novel mechanism by which Akt modulates LTCC stability could profoundly influence cardiac myocyte Ca(2+) entry, Ca(2+) handling, and contractility.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Señalización del Calcio , Cardiomiopatía Dilatada/enzimología , Miocitos Cardíacos/enzimología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Secuencias de Aminoácidos , Animales , Canales de Calcio Tipo L/genética , Cardiomiopatía Dilatada/etiología , Membrana Celular/enzimología , Células Cultivadas , Secuencia Conservada , Modelos Animales de Enfermedad , Masculino , Potenciales de la Membrana , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mutación , Contracción Miocárdica , Fosforilación , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Estabilidad Proteica , Subunidades de Proteína , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Recombinantes de Fusión/metabolismo , Tamoxifeno , Factores de Tiempo , Transfección
3.
J Mol Cell Cardiol ; 42(1): 196-205, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17052727

RESUMEN

Cardiac Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in heart has been implicated in Ca(2+) current (I(Ca)) facilitation, enhanced sarcoplasmic reticulum (SR) Ca(2+) release and frequency-dependent acceleration of relaxation (FDAR) via enhanced SR Ca(2+) uptake. However, questions remain about how CaMKII may work in these three processes. Here we tested the role of CaMKII in these processes using transgenic mice (SR-AIP) that express four concatenated repeats of the CaMKII inhibitory peptide AIP selectively in the SR membrane. Wild type mice (WT) and mice expressing AIP exclusively in the nucleus (NLS-AIP) served as controls. Increasing stimulation frequency produced typical FDAR in WT and NLS-AIP, but FDAR was markedly inhibited in SR-AIP. Quantitative analysis of cytosolic Ca(2+) removal during [Ca(2+)](i) decline revealed that FDAR is due to an increased apparent V(max) of SERCA. CaMKII-dependent RyR phosphorylation at Ser2815 and SR Ca(2+) leak was both decreased in SR-AIP vs. WT. This decrease in SR Ca(2+) leak may partly balance the reduced SERCA activity leading to relatively unaltered SR-Ca(2+) load in SR-AIP vs. WT myocytes. Surprisingly, CaMKII regulation of the L-type Ca(2+) channel (I(Ca) facilitation and recovery from inactivation) was abolished by the SR-targeted CaMKII inhibition in SR-AIP mice. Inhibition of CaMKII effects on I(Ca) and RyR function by the SR-localized AIP places physical constraints on the localization of these proteins at the junctional microdomain. Thus SR-targeted CaMKII inhibition can directly inhibit the activation of SR Ca(2+) uptake, SR Ca(2+) release and I(Ca) by CaMKII, effects which have all been implicated in triggered arrhythmias.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/antagonistas & inhibidores , Miocitos Cardíacos/metabolismo , Péptidos/metabolismo , Retículo Sarcoplasmático/metabolismo , Animales , Señalización del Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Citosol/metabolismo , Femenino , Técnicas In Vitro , Cinética , Masculino , Ratones , Ratones Transgénicos , Contracción Miocárdica , Péptidos/genética , Fosforilación , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Intercambiador de Sodio-Calcio/metabolismo
4.
Am J Physiol Heart Circ Physiol ; 290(2): H599-606, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16143658

RESUMEN

Transgenic (TG) mice expressing a Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitory peptide targeted to the cardiac myocyte longitudinal sarcoplasmic reticulum (LSR) display reduced phospholamban phosphorylation at Thr17 and develop dilated myopathy when stressed by gestation and parturition (Ji Y, Li B, Reed TD, Lorenz JN, Kaetzel MA, and Dedman JR. J Biol Chem 278: 25063-25071, 2003). In the present study, these animals (TG) are evaluated for the effect of inhibition of sarcoplasmic reticulum (SR) CaMKII activity on the contractile characteristics and Ca2+ cycling of myocytes. Analysis of isolated work-performing hearts demonstrated moderate decreases in the maximal rates of contraction and relaxation (+/-dP/dt) in TG mice. The response of the TG hearts to increases in load is reduced. The TG hearts respond to isoproterenol (Iso) in a dose-dependent manner; the contractile properties were reduced in parallel to wild-type hearts. Assessment of isolated cardiomyocytes from TG mice revealed 40-47% decrease in the maximal rates of myocyte shortening and relengthening under both basal and Iso-stimulated conditions. Although twitch Ca2+ transient amplitudes were not significantly altered, the rate of twitch intracellular Ca2+ concentration decline was reduced by approximately 47% in TG myocytes, indicating decreased SR Ca2+ uptake function. Caffeine-induced Ca2+ transients indicated unaltered SR Ca2+ content and Na+/Ca2+ exchange function. Phosphorylation assays revealed an approximately 30% decrease in the phosphorylation of ryanodine receptor Ser2809. Iso stimulation increased the phosphorylation of both phospholamban Ser16 and the ryanodine receptor Ser2809 but not phospholamban Thr17 in TG mice. This study demonstrates that inhibition of SR CaMKII activity at the LSR results in alterations in cardiac contractility and Ca2+ handling in TG hearts.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/antagonistas & inhibidores , Calcio/metabolismo , Homeostasis/fisiología , Contracción Miocárdica/fisiología , Miocardio/metabolismo , Retículo Sarcoplasmático/enzimología , Animales , Cafeína/farmacología , Proteínas de Unión al Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Cardiotónicos/farmacología , Femenino , Técnicas In Vitro , Isoproterenol/farmacología , Ratones , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Péptidos/metabolismo , Péptidos/farmacología , Fosforilación , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
5.
Circ Res ; 92(8): 904-11, 2003 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-12676813

RESUMEN

Ca2+/calmodulin-dependent protein kinase II (CaMKII) delta is the predominant cardiac isoform, and the deltaC splice variant is cytoplasmic. We overexpressed CaMKIIdeltaC in mouse heart and observed dilated heart failure and altered myocyte Ca2+ regulation in 3-month-old CaMKIIdeltaC transgenic mice (TG) versus wild-type littermates (WT). Heart/body weight ratio and cardiomyocyte size were increased about 2-fold in TG versus WT. At 1 Hz, twitch shortening, [Ca2+]i transient amplitude, and diastolic [Ca2+]i were all reduced by approximately 50% in TG versus WT. This is explained by >50% reduction in SR Ca2+ content in TG versus WT. Peak Ca2+ current (ICa) was slightly increased, and action potential duration was prolonged in TG versus WT. Despite lower SR Ca2+ load and diastolic [Ca2+]i, fractional SR Ca2+ release was increased and resting spontaneous SR Ca2+ release events (Ca2+ sparks) were doubled in frequency in TG versus WT (with prolonged width and duration, but lower amplitude). Enhanced Ca2+ spark frequency was also seen in TG at 4 weeks (before heart failure onset). Acute CaMKII inhibition normalized Ca2+ spark frequency and ICa, consistent with direct CaMKII activation of ryanodine receptors (and ICa) in TG. The rate of [Ca2+]i decline during caffeine exposure was faster in TG, indicating enhanced Na+-Ca2+ exchange function (consistent with protein expression measurements). Enhanced diastolic SR Ca2+ leak (via sparks), reduced SR Ca2+-ATPase expression, and increased Na+-Ca2+ exchanger explain the reduced diastolic [Ca2+]i and SR Ca2+ content in TG. We conclude that CaMKIIdeltaC overexpression causes acute modulation of excitation-contraction coupling, which contributes to heart failure.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Calcio/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Bencilaminas/farmacología , Western Blotting , Cafeína/farmacología , Canales de Calcio/fisiología , Proteínas de Unión al Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/antagonistas & inhibidores , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , ATPasas Transportadoras de Calcio/metabolismo , Cardiomegalia/enzimología , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Tamaño de la Célula/efectos de los fármacos , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Transgénicos , Microscopía Confocal , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Intercambiador de Sodio-Calcio/metabolismo , Sulfonamidas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA