Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Environ Health ; 23(1): 41, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627687

RESUMEN

BACKGROUND: Organophosphorus pesticides (OP) have been associated with various human health conditions. Animal experiments and in-vitro models suggested that OP may also affect the gut microbiota. We examined associations between ambient chronic exposure to OP and gut microbial changes in humans. METHODS: We recruited 190 participants from a community-based epidemiologic study of Parkinson's disease living in a region known for heavy agricultural pesticide use in California. Of these, 61% of participants had Parkinson's disease and their mean age was 72 years. Microbiome and predicted metagenome data were generated by 16S rRNA gene sequencing of fecal samples. Ambient long-term OP exposures were assessed using pesticide application records combined with residential addresses in a geographic information system. We examined gut microbiome differences due to OP exposures, specifically differences in microbial diversity based on the Shannon index and Bray-Curtis dissimilarities, and differential taxa abundance and predicted Metacyc pathway expression relying on regression models and adjusting for potential confounders. RESULTS: OP exposure was not associated with alpha or beta diversity of the gut microbiome. However, the predicted metagenome was sparser and less evenly expressed among those highly exposed to OP (p = 0.04). Additionally, we found that the abundance of two bacterial families, 22 genera, and the predicted expression of 34 Metacyc pathways were associated with long-term OP exposure. These pathways included perturbed processes related to cellular respiration, increased biosynthesis and degradation of compounds related to bacterial wall structure, increased biosynthesis of RNA/DNA precursors, and decreased synthesis of Vitamin B1 and B6. CONCLUSION: In support of previous animal studies and in-vitro findings, our results suggest that ambient chronic OP pesticide exposure alters gut microbiome composition and its predicted metabolism in humans.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Enfermedad de Parkinson , Plaguicidas , Anciano , Humanos , Bacterias , Compuestos Organofosforados , Plaguicidas/efectos adversos , ARN Ribosómico 16S/genética
2.
Mol Neurodegener ; 18(1): 100, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38115046

RESUMEN

BACKGROUND: Untargeted high-resolution metabolomic profiling provides simultaneous measurement of thousands of metabolites. Metabolic networks based on these data can help uncover disease-related perturbations across interconnected pathways. OBJECTIVE: Identify metabolic disturbances associated with Parkinson's disease (PD) in two population-based studies using untargeted metabolomics. METHODS: We performed a metabolome-wide association study (MWAS) of PD using serum-based untargeted metabolomics data derived from liquid chromatography with high-resolution mass spectrometry (LC-HRMS) using two distinct population-based case-control populations. We also combined our results with a previous publication of 34 metabolites linked to PD in a large-scale, untargeted MWAS to assess external validation. RESULTS: LC-HRMS detected 4,762 metabolites for analysis (HILIC: 2716 metabolites; C18: 2046 metabolites). We identified 296 features associated with PD at FDR<0.05, 134 having a log2 fold change (FC) beyond ±0.5 (228 beyond ±0.25). Of these, 104 were independently associated with PD in both discovery and replication studies at p<0.05 (170 at p<0.10), while 27 were associated with levodopa-equivalent dose among the PD patients. Intriguingly, among the externally validated features were the microbial-related metabolites, p-cresol glucuronide (FC=2.52, 95% CI=1.67, 3.81, FDR=7.8e-04) and p-cresol sulfate. P-cresol glucuronide was also associated with motor symptoms among patients. Additional externally validated metabolites associated with PD include phenylacetyl-L-glutamine, trigonelline, kynurenine, biliverdin, and pantothenic acid. Novel associations include the anti-inflammatory metabolite itaconate (FC=0.79, 95% CI=0.73, 0.86; FDR=2.17E-06) and cysteine-S-sulfate (FC=1.56, 95% CI=1.39, 1.75; FDR=3.43E-11). Seventeen pathways were enriched, including several related to amino acid and lipid metabolism. CONCLUSIONS: Our results revealed PD-associated metabolites, confirming several previous observations, including for p-cresol glucuronide, and newly implicating interesting metabolites, such as itaconate. Our data also suggests metabolic disturbances in amino acid and lipid metabolism and inflammatory processes in PD.


Asunto(s)
Aminoácidos , Enfermedad de Parkinson , Humanos , Aminoácidos/metabolismo , Enfermedad de Parkinson/metabolismo , Metabolismo de los Lípidos , Glucurónidos
3.
Sci Total Environ ; 864: 160851, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36526213

RESUMEN

BACKGROUND: Pesticide exposure has consistently been associated with Parkinson's disease (PD) onset. Yet, fewer epidemiologic studies have examined whether pesticides influence PD motor and non-motor symptom progression. OBJECTIVES: Using a geographic information system tool that integrates agricultural pesticide use reports and land use records to derive ambient exposures at residences and workplaces, we assessed associations between specific pesticides previously related to PD onset with PD symptom progression in two PD patient cohorts living in agricultural regions of California. METHODS: We calculated the pounds of pesticide applied agriculturally near each participant's residential or occupational addresses from 1974 to the year of PD diagnosis, using a geographic information system tool that links the California Pesticide Use Reports database to land use data. We examined 53 pesticides selected a priori as they have previously been associated with PD onset. We longitudinally followed two PD patient cohorts (PEG1 N = 242, PEG2 N = 259) for an average of 5.0 years (SD ± 3.5) and 2.7 years (SD ± 1.6) respectively and assessed PD symptoms using the movement disorder specialist-administered Unified Parkinson's disease Rating Scale part III (UPDRS), Mini-Mental State Examination (MMSE), and Geriatric Depression Scale (GDS). Weighted time-to-event regression models were implemented to estimate effects. RESULTS: Ten agricultural pesticides, including copper sulfate (pentahydrate), 2-methyl-4-chlorophenoxyacetic acid (MCPA) dimethylamine salt, tribufos, sodium cacodylate, methamidophos, ethephon, propargite, bromoxynil octanoate, monosodium methanearsonate (MSMA), and dicamba, were associated with faster symptom progression. Among these pesticides, residential or workplace proximity to higher amounts of copper sulfate (pentahydrate) and MCPA (dimethylamine salt) was associated with all three progression endpoints (copper sulfate: HRs = 1.22-1.36, 95 % CIs = 1.03-1.73; MCPA: HRs = 1.27-1.35, 95 % CIs = 1.02-1.70). CONCLUSIONS: Our findings suggest that pesticide exposure may not only be relevant for PD onset but also PD progression phenotypes. We have implicated ten specific pesticide active ingredients in faster PD motor and non-motor decline.


Asunto(s)
Ácido 2-Metil-4-clorofenoxiacético , Enfermedad de Parkinson , Plaguicidas , Humanos , Enfermedad de Parkinson/epidemiología , Enfermedad de Parkinson/genética , Sulfato de Cobre , Lugar de Trabajo , California/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA