Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Psychiatry Res ; 327: 115373, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37542794

RESUMEN

Bipolar disorder (BD) is a chronic and severe psychiatric disorder associated with significant medical morbidity and reduced life expectancy. In this study, we assessed accelerated epigenetic aging in individuals with BD using various DNA methylation (DNAm)-based markers. For this purpose, we used five epigenetic clocks (Horvath, Hannum, EN, PhenoAge, and GrimAge) and a DNAm-based telomere length clock (DNAmTL). DNAm profiles were obtained using Infinium MethylationEPIC Arrays from whole-blood samples of 184 individuals with BD. We also estimated blood cell counts based on DNAm levels for adjustment. Significant correlations between chronological age and each epigenetic age estimated using the six different clocks were observed. Following adjustment for blood cell counts, we found that the six epigenetic AgeAccels (age accelerations) were significantly associated with the body mass index. GrimAge AgeAccel was significantly associated with male sex, smoking status and childhood maltreatment. DNAmTL AgeAccel was significantly associated with smoking status. Overall, this study showed that distinct epigenetic clocks are sensitive to different aspects of aging process in BD. Further investigations with comprehensive epigenetic clock analyses and large samples are required to confirm our findings of potential determinants of an accelerated epigenetic aging in BD.


Asunto(s)
Trastorno Bipolar , Humanos , Masculino , Trastorno Bipolar/genética , Epigénesis Genética , Envejecimiento/genética , Metilación de ADN , Fumar
2.
Artículo en Inglés | MEDLINE | ID: mdl-35104608

RESUMEN

Next-generation sequencing now enables the rapid and affordable production of reliable biological data at multiple molecular levels, collectively referred to as "omics". To maximize the potential for discovery, computational biologists have created and adapted integrative multi-omic analytical methods. When applied to diseases with traceable pathophysiology such as cancer, these new algorithms and statistical approaches have enabled the discovery of clinically relevant molecular mechanisms and biomarkers. In contrast, these methods have been much less applied to the field of molecular psychiatry, although diagnostic and prognostic biomarkers are similarly needed. In the present review, we first briefly summarize main findings from two decades of studies that investigated single molecular processes in relation to mood disorders. Then, we conduct a systematic review of multi-omic strategies that have been proposed and used more recently. We also list databases and types of data available to researchers for future work. Finally, we present the newest methodologies that have been employed for multi-omics integration in other medical fields, and discuss their potential for molecular psychiatry studies.


Asunto(s)
Genómica , Trastornos del Humor , Biomarcadores , Genómica/métodos , Humanos , Trastornos del Humor/genética
3.
Ann Clin Transl Neurol ; 6(9): 1616-1638, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31420939

RESUMEN

OBJECTIVE: To identify a convergent, multitarget proliferation characteristic for astrocytoma transformation that could be targeted for therapy discovery. METHODS: Using an integrated functional genomics approach, we prioritized networks associated with astrocytoma progression using the following criteria: differential co-expression between grade II and grade III IDH1-mutated and 1p/19q euploid astrocytomas, preferential enrichment for genetic risk to cancer, association with patient survival and sample-level genomic features. Drugs targeting the identified multitarget network characteristic for astrocytoma transformation were computationally predicted using drug transcriptional perturbation data and validated using primary human astrocytoma cells. RESULTS: A single network, M2, consisting of 177 genes, was associated with glioma progression on the basis of the above criteria. Functionally, M2 encoded physically interacting proteins regulating cell cycle processes and analysis of genome-wide gene-regulatory interactions using mutual information and DNA-protein interactions revealed the known regulators of cell cycle processes FoxM1, B-Myb, and E2F2 as key regulators of M2. These results suggest functional disruption of M2 via gene mutation or altered expression as a convergent pathway regulating astrocytoma transformation. By considering M2 as a multitarget drug target regulating astrocytoma transformation, we identified several drugs that are predicted to restore M2 expression in anaplastic astrocytoma toward its low-grade profile and of these, we validated the known antiproliferative drug resveratrol as down-regulating multiple nodes of M2 including at nanomolar concentrations achievable in human cerebrospinal fluid by oral dosing. INTERPRETATION: Our results identify M2 as a multitarget network characteristic for astrocytoma progression and encourage M2-based drug screening to identify new compounds for preventing glioma transformation.


Asunto(s)
Neoplasias Encefálicas/genética , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Glioma/genética , Mutación , Astrocitoma/genética , Astrocitoma/patología , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Glioma/patología , Humanos
4.
Am J Med Genet A ; 170(11): 2847-2859, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27605097

RESUMEN

KBG syndrome, due to ANKRD11 alteration is characterized by developmental delay, short stature, dysmorphic facial features, and skeletal anomalies. We report a clinical and molecular study of 39 patients affected by KBG syndrome. Among them, 19 were diagnosed after the detection of a 16q24.3 deletion encompassing the ANKRD11 gene by array CGH. In the 20 remaining patients, the clinical suspicion was confirmed by the identification of an ANKRD11 mutation by direct sequencing. We present arguments to modulate the previously reported diagnostic criteria. Macrodontia should no longer be considered a mandatory feature. KBG syndrome is compatible with autonomous life in adulthood. Autism is less frequent than previously reported. We also describe new clinical findings with a potential impact on the follow-up of patients, such as precocious puberty and a case of malignancy. Most deletions remove the 5'end or the entire coding region but never extend toward 16q telomere suggesting that distal 16q deletion could be lethal. Although ANKRD11 appears to be a major gene associated with intellectual disability, KBG syndrome remains under-diagnosed. NGS-based approaches for sequencing will improve the detection of point mutations in this gene. Broad knowledge of the clinical phenotype is essential for a correct interpretation of the molecular results. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Enfermedades del Desarrollo Óseo/diagnóstico , Enfermedades del Desarrollo Óseo/genética , Estudios de Asociación Genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Mutación , Proteínas Represoras/genética , Anomalías Dentarias/diagnóstico , Anomalías Dentarias/genética , Adolescente , Adulto , Anciano , Alelos , Sustitución de Aminoácidos , Niño , Preescolar , Deleción Cromosómica , Cromosomas Humanos Par 16 , Hibridación Genómica Comparativa , Facies , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Fenotipo , Estudios Retrospectivos , Adulto Joven
5.
J Med Genet ; 52(1): 61-70, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25411445

RESUMEN

BACKGROUND: Homozygous mutations in WWOX were reported in eight individuals of two families with autosomal recessive spinocerebellar ataxia type 12 and in two siblings with infantile epileptic encephalopathy (IEE), including one who deceased prior to DNA sampling. METHODS: By combining array comparative genomic hybridisation, targeted Sanger sequencing and next generation sequencing, we identified five further patients from four families with IEE due to biallelic alterations of WWOX. RESULTS: We identified eight deleterious WWOX alleles consisting in four deletions, a four base-pair frameshifting deletion, one missense and two nonsense mutations. Genotype-phenotype correlation emerges from the seven reported families. The phenotype in four patients carrying two predicted null alleles was characterised by (1) little if any psychomotor acquisitions, poor spontaneous motility and absent eye contact from birth, (2) pharmacoresistant epilepsy starting in the 1st weeks of life, (3) possible retinal degeneration, acquired microcephaly and premature death. This contrasted with the less severe autosomal recessive spinocerebellar ataxia type 12 phenotype due to hypomorphic alleles. In line with this correlation, the phenotype in two siblings carrying a null allele and a missense mutation was intermediate. CONCLUSIONS: Our results obtained by a combination of different molecular techniques undoubtedly incriminate WWOX as a gene for recessive IEE and illustrate the usefulness of high throughput data mining for the identification of genes for rare autosomal recessive disorders. The structure of the WWOX locus encompassing the FRA16D fragile site might explain why constitutive deletions are recurrently reported in genetic databases, suggesting that WWOX-related encephalopathies, although likely rare, may not be exceptional.


Asunto(s)
Oxidorreductasas/genética , Fenotipo , Espasmos Infantiles/genética , Ataxias Espinocerebelosas/genética , Proteínas Supresoras de Tumor/genética , Codón sin Sentido/genética , Hibridación Genómica Comparativa , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación Missense/genética , Espasmos Infantiles/patología , Ataxias Espinocerebelosas/patología , Oxidorreductasa que Contiene Dominios WW
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA