Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Circ Res ; 132(5): 565-582, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36744467

RESUMEN

BACKGROUND: In the past years, several studies investigated how distinct immune cell subsets affects post-myocardial infarction repair. However, whether and how the tissue environment controls these local immune responses has remained poorly understood. We sought to investigate how antigen-specific T-helper cells differentiate under myocardial milieu's influence. METHODS: We used a transgenic T cell receptor (TCR-M) model and major histocompatibility complex-II tetramers, both myosin-specific, combined with single-cell transcriptomics (single-cell RNA sequencing [scRNA-seq]) and functional phenotyping to elucidate how the antigen-specific CD4+ T cells differentiate in the murine infarcted myocardium and influence tissue repair. Additionally, we transferred proinflammatory versus regulatory predifferentiated TCR-M-cells to dissect how they specially contribute to post-myocardial infarction inflammation. RESULTS: Flow cytometry and scRNA-/TCR-seq analyses revealed that transferred TCR-M cells acquired an induced regulatory phenotype (induced regulatory T cell) in the infarcted myocardium and blunted local inflammation. Myocardial TCR-M cells differentiated into 2 main lineages enriched with either cell activation and profibrotic transcripts (eg, Tgfb1) or suppressor immune checkpoints (eg, Pdcd1), which we also found in human myocardial tissue. These cells produced high levels of LAP (latency-associated peptide) and inhibited IL-17 (interleukin-17) responses. Endogenous myosin-specific T-helper cells, identified using genetically barcoded tetramers, also accumulated in infarcted hearts and exhibited a regulatory phenotype. Notably, TCR-M cells that were predifferentiated toward a regulatory phenotype in vitro maintained stable in vivo FOXP3 (Forkhead box P3) expression and anti-inflammatory activity whereas TH17 partially converted toward a regulatory phenotype in the injured myocardium. Overall, the myosin-specific Tregs dampened post-myocardial infarction inflammation, suppressed neighboring T cells, and were associated with improved cardiac function. CONCLUSIONS: These findings provide novel evidence that the heart and its draining lymph nodes actively shape local immune responses by promoting the differentiation of antigen-specific Tregs poised with suppressive function.


Asunto(s)
Infarto del Miocardio , Linfocitos T Reguladores , Ratones , Animales , Humanos , Miocardio/metabolismo , Infarto del Miocardio/metabolismo , Antígenos/metabolismo , Diferenciación Celular , Miosinas/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Inflamación/metabolismo , Factores de Transcripción Forkhead/genética
2.
Eur J Pharmacol ; 945: 175552, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36739076

RESUMEN

Increased aerobic glycolysis is a metabolic hallmark of proinflammatory leukocytes including macrophages and T cells. To take up glucose from the environment and fuel glycolysis, activated leukocytes upregulate the glucose transporter GLUT1. The orally bioavailable selective GLUT1 inhibitor BAY-876 was developed primarily as an anti-tumor drug. Our study assessed its activity on activated macrophages and CD4+ T cells. BAY-876 significantly attenuated glucose uptake by cultured CD4+ T cells and macrophages by 41% and 15%, respectively. Extracellular flux analysis of activated CD4+ T cells in vitro showed that BAY-876 significantly decreases glycolytic proton flux rate and lactate production, effects that are accompanied by an increased oxidative phosphorylation-mediated ATP production rate, leaving intracellular ATP levels per cell unchanged. However, GLUT1 inhibition reduced CD4+ T cell proliferation without compromising cell viability and reduced IFN-γ secretion by 20%. Moreover, TNF secretion from macrophages was reduced by 27%. We conclude that GLUT1-specific inhibitors, like BAY-876, deserve further in vivo testing in a broad range of (auto-) inflammatory disease models.


Asunto(s)
Linfocitos T CD4-Positivos , Glucosa , Transportador de Glucosa de Tipo 1/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Glucosa/metabolismo , Glucólisis , Macrófagos/metabolismo , Adenosina Trifosfato/metabolismo
3.
Elife ; 82019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31637998

RESUMEN

Monocyte counts are increased during human tuberculosis (TB) but it has not been determined whether Mycobacterium tuberculosis (Mtb) directly regulates myeloid commitment. We demonstrated that exposure to Mtb directs primary human CD34+ cells to differentiate into monocytes/macrophages. In vitro myeloid conversion did not require type I or type II IFN signaling. In contrast, Mtb enhanced IL-6 responses by CD34+ cell cultures and IL-6R neutralization inhibited myeloid differentiation and decreased mycobacterial growth in vitro. Integrated systems biology analysis of transcriptomic, proteomic and genomic data of large data sets of healthy controls and TB patients established the existence of a myeloid IL-6/IL6R/CEBP gene module associated with disease severity. Furthermore, genetic and functional analysis revealed the IL6/IL6R/CEBP gene module has undergone recent evolutionary selection, including Neanderthal introgression and human pathogen adaptation, connected to systemic monocyte counts. These results suggest Mtb co-opts an evolutionary recent IFN-IL6-CEBP feed-forward loop, increasing myeloid differentiation linked to severe TB in humans.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Interferones/metabolismo , Interleucina-6/metabolismo , Monocitos/metabolismo , Mycobacterium tuberculosis/inmunología , Tuberculosis/inmunología , Antígenos CD34 , Proteínas Potenciadoras de Unión a CCAAT/genética , Diferenciación Celular , Proliferación Celular , Citocinas/genética , Citocinas/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Hidrolasas , Interferones/genética , Interleucina-6/genética , Macrófagos/microbiología , Monocitos/microbiología , Mycobacterium tuberculosis/patogenicidad , Células Mieloides/fisiología , Proteómica , Receptores de Interleucina-6 , Índice de Severidad de la Enfermedad , Transcriptoma , Tuberculosis/metabolismo
4.
Braz. arch. biol. technol ; Braz. arch. biol. technol;62: e19180654, 2019. graf
Artículo en Inglés | LILACS | ID: biblio-1011532

RESUMEN

Abstract The gut is the main organ that mediates the contact between antigens with our organism, controlling the immune response against environmental factors, such as microbiota and food. Innate lymphoid cells participate in the gut-associated lymphoid tissue (GALT) maturation during the prenatal and early postnatal periods. After birth, breast milk provides the essential elements for the continuity of development of this tissue, leading to structural changes and healthy microbiota installation. The microbiota participates in the organogenesis of the GALT, as in the formation of intestinal villi, stimulating the proliferation of stem cells and maintaining the integrity of epithelial barrier. Foods are also involved in maturation of the GALT, where the protein source depletion reduced the number of resident lymphocytes. This unique microenvironment present in the intestinal lamina propria (LP) and mesenteric lymph nodes (mLN) induce tolerance to innocuous antigens from the diet, known as Oral Tolerance. Antigens sampled by intestinal epithelium cells are transferred to specialized dendritic cells, residing in the LP, which migrate to the mesenteric lymph nodes where they participate in the induction of regulatory T cells (Treg). Understanding these phenomena may establish the intestinal mucosa as a tool in therapy of inflammatory bowel diseases and immunological disorders.


Asunto(s)
Tolerancia Periférica , Microbiota , Sistema Inmunológico , Intestinos/fisiología
5.
J Thorac Dis ; 10(Suppl 35): S4323-S4334, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30701100

RESUMEN

The introduction of immune checkpoint inhibitors have greatly improved clinical outcomes in several cancer types, revolutionizing the management of a wide variety of tumors endowed with poor prognosis. Despite its success, high grade immune related adverse events were observed in patients treated with checkpoint inhibitors. While cardiotoxicity was largely underestimated in initial studies, numerous reports of fulminant myocarditis and fatal heart failure (HF) have been recently described. In this review we discuss possible mechanisms involved in cardiac toxicity triggered by inhibition of cytotoxic T lymphocyte antigen 4 (CTLA-4) and programmed cell death 1 (PD-1) pathway, the most prominent checkpoint inhibitors available in the clinic. Major cardiovascular events associated with checkpoint inhibitors adds another layer of complexity in cancer therapy and urges for an interdisciplinary approach between oncologists, cardiologists, and immunologist.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA