Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 115(11): E2604-E2613, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29483266

RESUMEN

Acetyl-CoA carboxylase (ACC) is a biotin-dependent enzyme that is the target of several classes of herbicides. Malaria parasites contain a plant-like ACC, and this is the only protein predicted to be biotinylated in the parasite. We found that ACC is expressed in the apicoplast organelle in liver- and blood-stage malaria parasites; however, it is activated through biotinylation only in the liver stages. Consistent with this observation, deletion of the biotin ligase responsible for ACC biotinylation does not impede blood-stage growth, but results in late liver-stage developmental defects. Biotin depletion increases the severity of the developmental defects, demonstrating that parasite and host biotin metabolism are required for normal liver-stage progression. This finding may link the development of liver-stage malaria parasites to the nutritional status of the host, as neither the parasite nor the human host can synthesize biotin.


Asunto(s)
Biotina/metabolismo , Interacciones Huésped-Parásitos/fisiología , Hígado/parasitología , Malaria/metabolismo , Plasmodium/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Animales , Apicoplastos/metabolismo , Ligasas de Carbono-Nitrógeno/metabolismo , Células Hep G2 , Humanos , Hígado/metabolismo , Malaria/parasitología , Ratones , Proteínas Protozoarias/metabolismo
2.
PLoS Pathog ; 9(9): e1003655, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24086138

RESUMEN

The apicoplast organelle of the malaria parasite Plasmodium falciparum contains metabolic pathways critical for liver-stage and blood-stage development. During the blood stages, parasites lacking an apicoplast can grow in the presence of isopentenyl pyrophosphate (IPP), demonstrating that isoprenoids are the only metabolites produced in the apicoplast which are needed outside of the organelle. Two of the isoprenoid biosynthesis enzymes are predicted to rely on iron-sulfur (FeS) cluster cofactors, however, little is known about FeS cluster synthesis in the parasite or the roles that FeS cluster proteins play in parasite biology. We investigated two putative FeS cluster synthesis pathways (Isc and Suf) focusing on the initial step of sulfur acquisition. In other eukaryotes, these proteins can be located in multiple subcellular compartments, raising the possibility of cross-talk between the pathways or redundant functions. In P. falciparum, SufS and its partner SufE were found exclusively the apicoplast and SufS was shown to have cysteine desulfurase activity in a complementation assay. IscS and its effector Isd11 were solely mitochondrial, suggesting that the Isc pathway cannot contribute to apicoplast FeS cluster synthesis. The Suf pathway was disrupted with a dominant negative mutant resulting in parasites that were only viable when supplemented with IPP. These parasites lacked the apicoplast organelle and its organellar genome--a phenotype not observed when isoprenoid biosynthesis was specifically inhibited with fosmidomycin. Taken together, these results demonstrate that the Suf pathway is essential for parasite survival and has a fundamental role in maintaining the apicoplast organelle in addition to any role in isoprenoid biosynthesis.


Asunto(s)
Apicoplastos/metabolismo , Liasas de Carbono-Azufre/metabolismo , Proteínas Hierro-Azufre/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Apicoplastos/genética , Liasas de Carbono-Azufre/genética , Humanos , Proteínas Hierro-Azufre/genética , Plasmodium falciparum/citología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Terpenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA