Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biofactors ; 50(1): 161-180, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37597249

RESUMEN

Recent reports indicated that the phytochemical curcumin possesses iron-chelating activity. Here, by employing the fruit fly Drosophila melanogaster, we conducted feeding studies supplementing curcumin or, as a control, the iron chelator bathophenanthroline (BPA). First, the absorption and further metabolization of dietary curcuminoids were proved by metabolomics analyses. Next, we found that 0.2% dietary curcumin, similar to BPA, lowered the iron but also the cobalt content, and to a lesser extent affected the manganese and zinc status. Supplementation during larval stages was required and sufficient for both compounds to elicit these alterations in adult animals. However, curcumin-induced retarded larval development was not attributable to the changed trace metal status. In addition, a reduction in the iron content of up to 70% by curcumin or BPA supplementation did not reduce heme-dependent catalase activity and tolerance toward H2 O2 in D. melanogaster. Moreover, polyamines were not influenced by curcumin treatment and decreased iron levels. This was confirmed for selected organs from 0.2% curcumin-treated mice, except for the spleen. Here, elevated spermidine level and concomitant upregulation of genes involved in polyamine production were associated with a putatively anemia-derived increased spleen mass. Our data underline that the metal-chelating property of curcumin needs to be considered in feeding studies.


Asunto(s)
Curcumina , Drosophila melanogaster , Ratones , Animales , Drosophila melanogaster/genética , Curcumina/farmacología , Cobalto , Poliaminas , Hierro , Estrés Oxidativo , Quelantes , Antioxidantes , Suplementos Dietéticos
2.
Nutrients ; 14(9)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35565905

RESUMEN

Vitamins and omega-3 fatty acids (Ω3FA) modulate periodontitis-associated inflammatory processes. The aim of the current investigation was to evaluate associations of oral nutrient intake and corresponding serum metabolites with clinical severity of human periodontitis. Within the Food Chain Plus cohort, 373 periodontitis patients­245 without (POL) and 128 with tooth loss (PWL)­were matched to 373 controls based on sex, smoking habit, age and body mass index in a nested case-control design. The amount of oral intake of vitamins and Ω3FAs was assessed from nutritional data using a Food Frequency Questionnaire. Oral intake and circulatory bioavailability of vitamins and Ω3FA serum metabolomics were compared, using ultra-high-resolution mass spectrometry. Periodontitis patients exhibited a significantly higher oral intake of vitamin C and Ω3FA Docosapentaenoic acid (p < 0.05) compared to controls. Nutritional intake of vitamin C was higher in PWL, while the intake of Docosapentaenoic acid was increased in POL (p < 0.05) compared to controls. In accordance, serum levels of Docosapentaenoic acid were also increased in POL (p < 0.01) compared to controls. Vitamin C and the Ω3FA Docosapentaenoic acid might play a role in the pathophysiology of human periodontitis. Further studies on individualized nutritional intake and periodontitis progression and therapy are necessary.


Asunto(s)
Ácidos Grasos Omega-3 , Periodontitis , Ácido Ascórbico , Estudios de Casos y Controles , Humanos , Periodontitis/metabolismo , Vitaminas
3.
Gut Microbes ; 14(1): 2057778, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35435797

RESUMEN

Recent rodent microbiome experiments suggest that besides Akkermansia, Parasutterella sp. are important in type 2 diabetes and obesity development. In the present translational human study, we aimed to characterize Parasutterella in our European cross-sectional FoCus cohort (n = 1,544) followed by validation of the major results in an independent Canadian cohort (n = 438). In addition, we examined Parasutterella abundance in response to a weight loss intervention (n = 55). Parasutterella was positively associated with BMI and type 2 diabetes independently of the reduced microbiome α/ß diversity and low-grade inflammation commonly found in obesity. Nutritional analysis revealed a positive association with the dietary intake of carbohydrates but not with fat or protein consumption. Out of 126 serum metabolites differentially detectable by untargeted HPLC-based MS-metabolomics, L-cysteine showed the strongest reduction in subjects with high Parasutterella abundance. This is of interest, since Parasutterella is a known high L-cysteine consumer and L-cysteine is known to improve blood glucose levels in rodents. Furthermore, metabolic network enrichment analysis identified an association of high Parasutterella abundance with the activation of the human fatty acid biosynthesis pathway suggesting a mechanism for body weight gain. This is supported by a significant reduction of the Parasutterella abundance during our weight loss intervention. Together, these data indicate a role for Parasutterella in human type 2 diabetes and obesity, whereby the link to L-cysteine might be relevant in type 2 diabetes development and the link to the fatty acid biosynthesis pathway for body weight gain in response to a carbohydrate-rich diet in obesity development.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Canadá , Estudios Transversales , Cisteína , Carbohidratos de la Dieta , Ácidos Grasos , Humanos , Obesidad , Pérdida de Peso
4.
Cancers (Basel) ; 12(1)2019 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-31877753

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is amongst the most fatal malignancies and its development is highly associated with inflammatory processes such as chronic pancreatitis (CP). Since the succinate dehydrogenase subunit B (SDHB) is regarded as tumor suppressor that is lost during cancer development, this study investigated the impact of M1-macrophages as part of the inflammatory microenvironment on the expression as well as function of SDHB in benign and premalignant pancreatic ductal epithelial cells (PDECs). Immunohistochemical analyses on pancreatic tissue sections from CP patients and control individuals revealed a stronger SDHB expression in ducts of CP tissues being associated with a greater abundance of macrophages compared to ducts in control tissues. Accordingly, indirect co-culture with M1-macrophages led to clearly elevated SDHB expression and SDH activity in benign H6c7-pBp and premalignant H6c7-kras PDECs. While siRNA-mediated SDHB knockdown in these cells did not affect glucose and lactate uptake after co-culture, SDHB knockdown significantly promoted PDEC growth which was associated with increased proliferation and decreased effector caspase activity particularly in co-cultured PDECs. Overall, these data indicate that SDHB expression and SDH activity are increased in PDECs when exposed to pro-inflammatory macrophages as a counterregulatory mechanism to prevent excessive PDEC growth triggered by the inflammatory environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA