Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cell Rep ; 42(1): 111934, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36640353

RESUMEN

Cachexia is a systemic wasting syndrome that increases cancer-associated mortality. How cachexia progressively and differentially impacts distinct tissues is largely unknown. Here, we find that the heart and skeletal muscle undergo wasting at early stages and are the tissues transcriptionally most impacted by cachexia. We also identify general and organ-specific transcriptional changes that indicate functional derangement by cachexia even in tissues that do not undergo wasting, such as the brain. Secreted factors constitute a top category of cancer-regulated genes in host tissues, and these changes include upregulation of the angiotensin-converting enzyme (ACE). ACE inhibition with the drug lisinopril improves muscle force and partially impedes cachexia-induced transcriptional changes, although wasting is not prevented, suggesting that cancer-induced host-secreted factors can regulate tissue function during cachexia. Altogether, by defining prevalent and temporal and tissue-specific responses to cachexia, this resource highlights biomarkers and possible targets for general and tissue-tailored anti-cachexia therapies.


Asunto(s)
Melanoma , Neoplasias , Síndrome Debilitante , Ratones , Animales , Caquexia , Neoplasias/patología , Músculo Esquelético/patología , Síndrome Debilitante/complicaciones , Melanoma/patología , Atrofia Muscular/patología
2.
Bio Protoc ; 12(11)2022 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-35799907

RESUMEN

Aging and wasting of skeletal muscle reduce organismal fitness. Regrettably, only limited interventions are currently available to address this unmet medical need. Many methods have been developed to study this condition, including the intramuscular electroporation of DNA plasmids. However, this technique requires surgery and high electrical fields, which cause tissue damage. Here, we report an optimized protocol for the electroporation of small interfering RNAs (siRNAs) into the tibialis anterior muscle of mice. This protocol does not require surgery and, because of the small siRNA size, mild electroporation conditions are utilized. By inducing target mRNA knockdown, this method can be used to interrogate gene function in muscles of mice from different strains, genotypes, and ages. Moreover, a complementary method for siRNA transfection into differentiated myotubes can be used for testing siRNA efficacy before in vivo use. Altogether, this streamlined protocol is instrumental for basic science and translational studies in muscles of mice and other animal models.

3.
Nat Commun ; 13(1): 2370, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35501350

RESUMEN

Decline in skeletal muscle cell size (myofiber atrophy) is a key feature of cancer-induced wasting (cachexia). In particular, atrophy of the diaphragm, the major muscle responsible for breathing, is an important determinant of cancer-associated mortality. However, therapeutic options are limited. Here, we have used Drosophila transgenic screening to identify muscle-secreted factors (myokines) that act as paracrine regulators of myofiber growth. Subsequent testing in mouse myotubes revealed that mouse Fibcd1 is an evolutionary-conserved myokine that preserves myofiber size via ERK signaling. Local administration of recombinant Fibcd1 (rFibcd1) ameliorates cachexia-induced myofiber atrophy in the diaphragm of mice bearing patient-derived melanoma xenografts and LLC carcinomas. Moreover, rFibcd1 impedes cachexia-associated transcriptional changes in the diaphragm. Fibcd1-induced signaling appears to be muscle selective because rFibcd1 increases ERK activity in myotubes but not in several cancer cell lines tested. We propose that rFibcd1 may help reinstate myofiber size in the diaphragm of patients with cancer cachexia.


Asunto(s)
Caquexia , Neoplasias , Animales , Atrofia/metabolismo , Caquexia/metabolismo , Humanos , Ratones , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Neoplasias/complicaciones , Neoplasias/genética , Neoplasias/metabolismo , Receptores de Superficie Celular/metabolismo
4.
Cell Rep ; 37(6): 109971, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34758314

RESUMEN

Skeletal muscle atrophy is a debilitating condition that occurs with aging and disease, but the underlying mechanisms are incompletely understood. Previous work determined that common transcriptional changes occur in muscle during atrophy induced by different stimuli. However, whether this holds true at the proteome level remains largely unexplored. Here, we find that, contrary to this earlier model, distinct atrophic stimuli (corticosteroids, cancer cachexia, and aging) induce largely different mRNA and protein changes during muscle atrophy in mice. Moreover, there is widespread transcriptome-proteome disconnect. Consequently, atrophy markers (atrogenes) identified in earlier microarray-based studies do not emerge from proteomics as generally induced by atrophy. Rather, we identify proteins that are distinctly modulated by different types of atrophy (herein defined as "atroproteins") such as the myokine CCN1/Cyr61, which regulates myofiber type switching during sarcopenia. Altogether, these integrated analyses indicate that different catabolic stimuli induce muscle atrophy via largely distinct mechanisms.


Asunto(s)
Regulación de la Expresión Génica , Músculo Esquelético/patología , Atrofia Muscular/patología , Proteoma , Sarcopenia/patología , Transcriptoma , Envejecimiento , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Sarcopenia/genética , Sarcopenia/metabolismo
5.
Ageing Res Rev ; 69: 101358, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33979693

RESUMEN

Huntington disease (HD) is an autosomal dominant neurodegenerative disease that is caused by expansion of cytosine/adenosine/guanine repeats in the huntingtin (HTT) gene, which leads to a toxic, aggregation-prone, mutant HTT-polyQ protein. Beyond the well-established mechanisms of HD progression in the central nervous system, growing evidence indicates that also peripheral tissues are affected in HD and that systemic signaling originating from peripheral tissues can influence the progression of HD in the brain. Herein, we review the systemic manifestation of HD in peripheral tissues, and the impact of systemic signaling on HD pathogenesis. Mutant HTT induces a body wasting syndrome (cachexia) primarily via its activity in skeletal muscle, bone, adipose tissue, and heart. Additional whole-organism effects induced by mutant HTT include decline in systemic metabolic homeostasis, which stems from derangement of pancreas, liver, gut, hypothalamic-pituitary-adrenal axis, and circadian functions. In addition to spreading via the bloodstream and a leaky blood brain barrier, HTT-polyQ may travel long distance via its uptake by neurons and its axonal transport from the peripheral to the central nervous system. Lastly, signaling factors that are produced and/or secreted in response to therapeutic interventions such as exercise or in response to mutant HTT activity in peripheral tissues may impact HD. In summary, these studies indicate that HD is a systemic disease that is influenced by intertissue signaling and by the action of pathogenic HTT in peripheral tissues. We propose that treatment strategies for HD should include the amelioration of HD symptoms in peripheral tissues. Moreover, harnessing signaling between peripheral tissues and the brain may provide a means for reducing HD progression in the central nervous system.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo
6.
Cell Rep ; 28(5): 1268-1281.e6, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31365869

RESUMEN

Skeletal muscle cell (myofiber) atrophy is a detrimental component of aging and cancer that primarily results from muscle protein degradation via the proteasome and ubiquitin ligases. Transcriptional upregulation of some ubiquitin ligases contributes to myofiber atrophy, but little is known about the role that most other ubiquitin ligases play in this process. To address this question, we have used RNAi screening in Drosophila to identify the function of > 320 evolutionarily conserved ubiquitin ligases in myofiber size regulation in vivo. We find that whereas RNAi for some ubiquitin ligases induces myofiber atrophy, loss of others (including the N-end rule ubiquitin ligase UBR4) promotes hypertrophy. In Drosophila and mouse myofibers, loss of UBR4 induces hypertrophy via decreased ubiquitination and degradation of a core set of target proteins, including the HAT1/RBBP4/RBBP7 histone-binding complex. Together, this study defines the repertoire of ubiquitin ligases that regulate myofiber size and the role of UBR4 in myofiber hypertrophy.


Asunto(s)
Proteínas de Unión a Calmodulina/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Musculares/metabolismo , Miofibrillas/enzimología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Proteínas de Unión a Calmodulina/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Hipertrofia , Ratones , Proteínas Musculares/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
7.
Genes Dev ; 30(12): 1409-22, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27313316

RESUMEN

Aging is a risk factor for many human pathologies and is characterized by extensive metabolic changes. Using targeted high-throughput metabolite profiling in Drosophila melanogaster at different ages, we demonstrate that methionine metabolism changes strikingly during aging. Methionine generates the methyl donor S-adenosyl-methionine (SAM), which is converted via methylation to S-adenosyl-homocysteine (SAH), which accumulates during aging. A targeted RNAi screen against methionine pathway components revealed significant life span extension in response to down-regulation of two noncanonical Drosophila homologs of the SAH hydrolase Ahcy (S-adenosyl-L-homocysteine hydrolase [SAHH[), CG9977/dAhcyL1 and Ahcy89E/CG8956/dAhcyL2, which act as dominant-negative regulators of canonical AHCY. Importantly, tissue-specific down-regulation of dAhcyL1/L2 in the brain and intestine extends health and life span. Furthermore, metabolomic analysis of dAhcyL1-deficient flies revealed its effect on age-dependent metabolic reprogramming and H3K4 methylation. Altogether, reprogramming of methionine metabolism in young flies and suppression of age-dependent SAH accumulation lead to increased life span. These studies highlight the role of noncanonical Ahcy enzymes as determinants of healthy aging and longevity.


Asunto(s)
Envejecimiento/metabolismo , Regulación hacia Abajo , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Péptidos y Proteínas de Señalización Intracelular/genética , Longevidad/genética , Animales , Encéfalo/enzimología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Femenino , Heterocromatina/genética , Intestinos/enzimología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Metionina/metabolismo , Metilación , S-Adenosilhomocisteína
8.
Aging Cell ; 12(6): 943-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23802635

RESUMEN

Epidemiological studies in humans suggest that skeletal muscle aging is a risk factor for the development of several age-related diseases such as metabolic syndrome, cancer, Alzheimer's and Parkinson's disease. Here, we review recent studies in mammals and Drosophila highlighting how nutrient- and stress-sensing in skeletal muscle can influence lifespan and overall aging of the organism. In addition to exercise and indirect effects of muscle metabolism, growing evidence suggests that muscle-derived growth factors and cytokines, known as myokines, modulate systemic physiology. Myokines may influence the progression of age-related diseases and contribute to the intertissue communication that underlies systemic aging.


Asunto(s)
Longevidad/fisiología , Músculo Esquelético/fisiología , Animales , Comunicación Celular , Citocinas/metabolismo , Ejercicio Físico , Humanos , Especificidad de Órganos
9.
PLoS One ; 4(3): e4753, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19270738

RESUMEN

BACKGROUND: The Usher syndrome (USH) is the most frequent deaf-blindness hereditary disease in humans. Deafness is attributed to the disorganization of stereocilia in the inner ear. USH1, the most severe subtype, is associated with mutations in genes encoding myosin VIIa, harmonin, cadherin 23, protocadherin 15, and sans. Myosin VIIa, harmonin, cadherin 23, and protocadherin 15 physically interact in vitro and localize to stereocilia tips in vivo, indicating that they form functional complexes. Sans, in contrast, localizes to vesicle-like structures beneath the apical membrane of stereocilia-displaying hair cells. How mutations in sans result in deafness and blindness is not well understood. Orthologs of myosin VIIa and protocadherin 15 have been identified in Drosophila melanogaster and their genetic analysis has identified essential roles in auditory perception and microvilli morphogenesis, respectively. PRINCIPAL FINDINGS: Here, we have identified and characterized the Drosophila ortholog of human sans. Drosophila Sans is expressed in tubular organs of the embryo, in lens-secreting cone cells of the adult eye, and in microvilli-displaying follicle cells during oogenesis. Sans mutants are viable, fertile, and mutant follicle cells appear to form microvilli, indicating that Sans is dispensable for fly development and microvilli morphogenesis in the follicle epithelium. In follicle cells, Sans protein localizes, similar to its vertebrate ortholog, to intracellular punctate structures, which we have identified as early endosomes associated with the syntaxin Avalanche. CONCLUSIONS: Our work is consistent with an evolutionary conserved function of Sans in vesicle trafficking. Furthermore it provides a significant basis for further understanding of the role of this Usher syndrome ortholog in development and disease.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrión de Mamíferos/metabolismo , Proteínas del Tejido Nervioso/genética , Folículo Ovárico/metabolismo , Animales , Repetición de Anquirina , Clonación Molecular , Drosophila melanogaster , Embrión de Mamíferos/citología , Ojo/citología , Ojo/metabolismo , Femenino , Fertilidad , Humanos , Miosina VIIa , Miosinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Folículo Ovárico/citología , Filogenia , Proteínas Qa-SNARE/metabolismo
10.
Dev Dyn ; 236(12): 3408-18, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17854054

RESUMEN

Communication among cells by means of the exchange of signaling cues is important for tissue and organ development. Recent reports indicate that one way that signaling cues can be delivered is by movement along cellular protrusions interconnecting cells. Here, by using confocal laser scanning microscopy and three-dimensional rendering, we describe in Drosophila melanogaster wing imaginal discs lateral protrusions interconnecting cells of the columnar epithelium. Moreover, we identified protrusions of the apical surface of columnar cells that reached and apparently contacted cells of the overlying squamous epithelium. Both apical and lateral protrusions could be visualized by expression of Tkv-GFP, a green fluorescent protein (GFP) -tagged version of a receptor of the Dpp/BMP4 signaling molecule, and the endosome marker GFP-Rab5. Our results demonstrate a previously unexpected richness of cellular protrusions within wing imaginal discs and support the view that cellular protrusions may provide a means for exchanging signaling cues between cells.


Asunto(s)
Drosophila melanogaster/citología , Drosophila melanogaster/crecimiento & desarrollo , Alas de Animales/citología , Alas de Animales/crecimiento & desarrollo , Actinas/metabolismo , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Proteína Morfogenética Ósea 4 , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Comunicación Celular , Cartilla de ADN/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Confocal , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Alas de Animales/metabolismo , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión al GTP rab5/metabolismo
11.
Am J Pathol ; 165(1): 181-9, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15215174

RESUMEN

Survivin is strongly expressed in embryonic organs and in tumor cells but is low or absent in differentiated normal tissues. Resting endothelium expresses low levels of survivin but can up-regulate its synthesis on activation to proliferate. The mechanisms responsible for survivin down-regulation in resting conditions are still unknown. We report here that confluence and vascular endothelial-cadherin (VE-cadherin) expression induce contact inhibition of cell growth and survivin down-regulation in the endothelium. Using beta-catenin null and positive isogenic endothelial cell lines we found that the effect requires beta-catenin expression and its association to VE-cadherin cytoplasmic tail. Furthermore, in allantois organ cultures, survivin expression is up-regulated in areas of growing vessels where VE-cadherin is partially dismantled from junctions or in VE-cadherin -/- specimens. Overall, these data indicate that VE-cadherin and beta-catenin may negatively regulate survivin synthesis in endothelial cells. Consistently, in epidermal and pancreatic cell lines or ovarian tumors, epithelial-cadherin (E-cadherin) and survivin expression is inversely related, suggesting a non-cell-specific role of cadherins in reducing survivin synthesis.


Asunto(s)
Cadherinas/metabolismo , Endotelio Vascular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Alantoides/citología , Animales , Antígenos CD , Western Blotting , Cadherinas/genética , División Celular , Línea Celular , Línea Celular Tumoral , Análisis por Conglomerados , Proteínas del Citoesqueleto , Regulación hacia Abajo , Embrión de Mamíferos , Endotelio Vascular/citología , Fibronectinas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes , Humanos , Proteínas Inhibidoras de la Apoptosis , Proteínas Luminiscentes , Ratones , Ratones Noqueados , Microscopía Confocal , Proteínas Asociadas a Microtúbulos/genética , Proteínas de Neoplasias , Neovascularización Fisiológica/fisiología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Células Madre/citología , Survivin , Transactivadores , Venas Umbilicales/citología , Regulación hacia Arriba , beta Catenina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA