Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 12(45): 50303-50314, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33119274

RESUMEN

Cell culture on microcarriers emerges as an alternative of two-dimensional culture to produce large cell doses, which are required for cell-based therapies. Herein, we report a versatile and easy solvent-free greener fabrication process to prepare microcarriers based on a biosourced and compostable polymer. The preparation of the microcarrier core, which is based on poly(L-lactide) crystallization from a polymer blend, allows us to easily tune the density, porosity, and size of the microparticles. A bioadhesive coating based on biopolymers, devoid of animal protein and optimized to improve cell adhesion, is then successfully deposited on the surface of the microcarriers. The ability of these new microcarriers to expand human adipose-derived stromal cells with good yield, in semistatic and dynamic conditions, is demonstrated. Finally, bead-to-bead cell transfer is shown to increase the yield of cell production without having to stop the culture. These microcarriers are therefore a promising and efficient green alternative to currently existing systems.


Asunto(s)
Tejido Adiposo/citología , Técnicas de Cultivo de Célula , Células Madre Mesenquimatosas/citología , Poliésteres/química , Adhesión Celular , Células Cultivadas , Cristalización , Humanos , Tamaño de la Partícula , Porosidad , Propiedades de Superficie
2.
RSC Adv ; 8(41): 22932-22943, 2018 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35540120

RESUMEN

Hybrid nanobiointerfaces were designed as an original contribution to the challenge of synthesizing nanostructured biomaterials integrating a set of cell fate-determining cues, originally provided to cells by the extracellular matrix (ECM). The produced biointerfaces consist of a stiff framework of intersected polypyrrole (PPy) nanotubes supporting a soft multilayer composed of ECM-derived biomacromolecules: collagen (Col) and hyaluronic acid (HA). PPy frameworks with highly tunable characteristics were synthesized through chemical oxidative polymerization of pyrrole monomers, templated within track-etched polycarbonate (PC) membranes featuring a network of intersected nanopores. PPy interfaces with a porosity of 80%, composed of nanotubes with an average diameter ranging from 40 to 300 nm, intersecting at an angle of 90°, were shown to be self-supported. These rigid PPy nanostructured interfaces were functionalized with a self-assembling (HA/Col) multilayer deposited via a layer-by-layer process. Biofunctionalized and unmodified PPy frameworks were both shown to promote sustained cell adhesion, therefore demonstrating the cytocompatibility of the engineered matrices. Such nanobiointerfaces, combining a mechanically-stable framework of tunable dimensions with a soft biopolymeric multilayer of highly versatile nature, pave the way towards cell-instructive biomaterials able to gather a wide range of cues guiding cell behavior. The developed self-supported structures could be used as a coating or as membranes bridging different tissues.

3.
Langmuir ; 31(26): 7264-73, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26075831

RESUMEN

A wide range of nano-objects are synthesized by combining template synthesis, using polycarbonate membrane as template, with different material deposition methods. The resulting nanostructures varied from robust inorganic gold nanowires grown by electrodeposition to rigid polypyrrole nanotubes synthesized by chemical polymerization and softer nanotubes made of different combinations of synthetic and natural polyelectrolytes fabricated by layer-by-layer (LbL) assembly. The morphology of these various nano-objects is characterized prior to and after their immersion in water, revealing that the rigidity degree of LbL nanotubes strongly decreases after being in contact with water, leading to highly swollen and flexible nanotubes in aqueous solution that tend to stick to any surface and are very difficult to collect and disperse quantitatively in aqueous solution. Different processes to collect these nano-objects and disperse them in aqueous medium for further analysis and application were then studied. Among them, a method based on simple filtration of nanotubes in the presence of a powdered dextran adjuvant leads to the quantitative collection and dispersion in water of all types of tested cylindrical nano-objects. This universal method to efficiently collect membrane templated nano-objects paves the way to further characterization of a large variety of nanotubes in aqueous solution and to their potential use as cargo nanocarriers or as nanoreactors.

4.
Biomacromolecules ; 15(10): 3706-16, 2014 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-25136931

RESUMEN

Immobilized proteins or peptides are of critical importance for applications such as biosensing or cell culture. We analyze the structure of layers of a large variety of proteins and peptides, grafted on silicon substrates by different routes differing in the nature of the intermediate layer linking the biomolecules to the substrate, either a silane monolayer, or a polyelectrolyte multilayer made from synthetic or natural polymers. The structural analysis is essentially performed by X-ray reflectometry, which proves to be an efficient methodology not requiring the use of tagged biomolecules, capable of evaluating consistently the amount of grafted biomolecules per surface area with estimated precisions ranging from 10 to 20%. The study provides a quantitative basis for selecting one among a series of well-proofed and sturdy grafting methodologies and underlines the potential of XRR for assessing the amount of grafted biomacromolecules without requiring the expensive tagging of molecules. Our results also show that, for the coupling route resting on synthetic polyelectrolytes, the grafting density is significantly lower than for direct coupling over a silane layer. In contrast, when performed over a cushion based on polysaccharides, the grafting density is well above the values found for a dense layer grafted on a silane monolayer, indicating partial penetration and swelling of the polysaccharide cushion.


Asunto(s)
Péptidos/química , Proteínas/química , Silanos/química , Polisacáridos/química , Silicio/química , Propiedades de Superficie
5.
ACS Appl Mater Interfaces ; 2(5): 1369-76, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20405868

RESUMEN

A variety of new multisegmented nanowires based on magnetic metals and conjugated polymers, polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT), were synthesized by an all-electrochemical template method for precise control over segment lengths. To overcome the major problem occurring when performing direct electrodeposition of PPy or PEDOT on active metals, such as nickel, the concomitant metal oxidation and redissolution at the positive potentials required for polymer formation, we developed a two-step chemical process. Prior to electropolymerization, the Ni surface was pretreated with 3-(pyrrol-1-yl) propanoic acid. This strategy allowed the improvement of the polymer adhesion, resulting in the formation of mechanically robust Ni/conjugated polymer interfaces. By this way, we successfully prepared various original trisegmented nanostructures, such as systems containing one magnetic segment, Ni-PPy-Pt and Ni-PEDOT-Au nanowires, and systems containing two different magnetic metals, Ni-PPy-Co and Ni-PEDOT-Co nanowires. All these one-dimensional multicomponent nanostructures present both fundamental interest and potential applications in nanoelectronics and in biomedical field.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/química , Magnetismo , Nanotubos/química , Nanotubos/ultraestructura , Polímeros/química , Pirroles/química , Ensayo de Materiales , Propiedades de Superficie
6.
J Mater Sci Mater Med ; 21(3): 925-30, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20143134

RESUMEN

One of the key challenges to engineering neural interfaces is to reduce their immune response toward implanted electrodes. One potential approach to minimize or eliminate this undesired early inflammatory tissue reaction and to maintain signal transmission quality over time is the delivery of anti-inflammatory biomolecules in the vicinity of the implant. Here, we report on a facile and reproducible method for the fabrication of high surface area nanostructured electrodes coated with an electroactive polymer, polypyrrole (PPy) that can be used to precisely release drug by applying an electrical stimuli. The method consists of the electropolymerization of PPy incorporated with drug, dexamethasone (DEX), onto a brush of metallic nanopillars, obtained by electrodeposition of the metal within the nanopores of gold-coated polycarbonate template. The study of the release of DEX triggered by electrochemical stimuli indicates that the system is a true electrically controlled release system. Moreover, it appears that the presence of metallic nanowires onto the electrode surface improves the adherence between the polymer and the electrode and increases the electroactivity of the PPy coating.


Asunto(s)
Materiales Biocompatibles/química , Dexametasona/química , Sistemas de Liberación de Medicamentos , Nanotecnología/métodos , Polímeros/química , Pirroles/química , Antiinflamatorios/farmacología , Electroquímica/métodos , Electrodos , Humanos , Metales/química , Microscopía Electrónica de Rastreo/métodos , Nanoestructuras , Platino (Metal)/química , Prótesis e Implantes
7.
Biosens Bioelectron ; 24(12): 3531-7, 2009 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-19501500

RESUMEN

A new protein sensor is demonstrated by replacing the gate of a metal oxide semiconductor field effect transistor (MOSFET) with a nano-interdigitated array (nIDA). The sensor is able to detect the binding reaction of a typical antibody Ixodes ricinus immunosuppressor (anti-Iris) protein at a concentration lower than 1 ng/ml. The sensor exhibits a high selectivity and reproducible specific detection. We provide a simple model that describes the behavior of the sensor and explains the origin of its high sensitivity. The simulated and experimental results indicate that the drain current of nIDA-gate MOSFET sensor is significantly increased with the successive binding of the thiol layer, Iris and anti-Iris protein layers. It is found that the sensor detection limit can be improved by well optimizing the geometrical parameters of nIDA-gate MOSFET. This nanobiosensor, with real-time and label-free capabilities, can easily be used for the detection of other proteins, DNA, virus and cancer markers. Moreover, an on-chip associated electronics nearby the sensor can be integrated since its fabrication is compatible with complementary metal oxide semiconductor (CMOS) technology.


Asunto(s)
Técnicas Biosensibles/instrumentación , Electroquímica/instrumentación , Nanotecnología/instrumentación , Análisis por Matrices de Proteínas/instrumentación , Mapeo de Interacción de Proteínas/instrumentación , Procesamiento de Señales Asistido por Computador/instrumentación , Transistores Electrónicos , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Transductores
8.
Langmuir ; 22(3): 1173-81, 2006 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-16430281

RESUMEN

We compare two routes for creating protein adsorption-resistant self-assembled monolayers (SAMs) by chemical modification of silicon surfaces with poly(ethylene oxide) (PEO) oligomeric derivatives. The first route involves the assembly of 2-methyl[(polyethyleneoxy)propyl]trichlorosilane (Cl3SiMPEO) films onto oxidized silicon surfaces (OH-SiO(x)) either by a liquid-phase process at room temperature or by a gas-phase process at 423 K, producing Si-O-Si bonds between the substrate and the organic layer. The second pathway makes use of the assembly of poly(ethylene glycol methyl ether) (MPEG) films onto hydrogen-passivated silicon surfaces (H-Si) using a liquid-phase process at 353 or 423 K, leading to the formation of Si-O-C bonds between the substrate and the organic layer. Structural investigation by X-ray reflectometry (XRR) reveals that the thickness and surface densities of the grafted PEO monolayers strongly depend on experimental conditions such as temperature and grafting time. Atomic force microscopy (AFM) shows that very smooth and homogeneous monolayers can be obtained with average roughnesses close to those measured on the corresponding bare substrates. Finally, the antifouling properties of the modified silicon surfaces were evaluated by X-ray photoelectron spectroscopy (XPS), using a membrane protein (P.69 antigen) as model protein. Both types of PEO monolayers exhibit excellent protein repellency, as soon as the grafting density is equal to or higher than 1.7 chains/nm2.


Asunto(s)
Hidrógeno/química , Polietilenglicoles/química , Proteínas/química , Silicio/química , Propiedades de Superficie , Microscopía de Fuerza Atómica , Oxidación-Reducción , Análisis Espectral/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA