Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Stroke ; 55(6): 1650-1659, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38738428

RESUMEN

BACKGROUND: Beyond neuronal injury, cell death pathways may also contribute to vascular injury after stroke. We examined protein networks linked to major cell death pathways and identified SLC22A17 (solute carrier family 22 member 17) as a novel mediator that regulates endothelial tight junctions after ischemia and inflammatory stress. METHODS: Protein-protein interactions and brain enrichment analyses were performed using STRING, Cytoscape, and a human tissue-specific expression RNA-seq database. In vivo experiments were performed using mouse models of transient focal cerebral ischemia. Human stroke brain tissues were used to detect SLC22A17 by immunostaining. In vitro experiments were performed using human brain endothelial cultures subjected to inflammatory stress. Immunostaining and Western blot were used to assess responses in SLC22A17 and endothelial tight junctional proteins. Water content, dextran permeability, and electrical resistance assays were used to assess edema and blood-brain barrier (BBB) integrity. Gain and loss-of-function studies were performed using lentiviral overexpression of SLC22A17 or short interfering RNA against SLC22A17, respectively. RESULTS: Protein-protein interaction analysis showed that core proteins from apoptosis, necroptosis, ferroptosis, and autophagy cell death pathways were closely linked. Among the 20 proteins identified in the network, the iron-handling solute carrier SLC22A17 emerged as the mediator enriched in the brain. After cerebral ischemia in vivo, endothelial expression of SLC22A17 increases in both human and mouse brains along with BBB leakage. In human brain endothelial cultures, short interfering RNA against SLC22A17 prevents TNF-α (tumor necrosis factor alpha)-induced ferroptosis and downregulation in tight junction proteins and disruption in transcellular permeability. Notably, SLC22A17 could repress the transcription of tight junctional genes. Finally, short interfering RNA against SLC22A17 ameliorates BBB leakage in a mouse model of focal cerebral ischemia. CONCLUSIONS: Using a combination of cell culture, human stroke samples, and mouse models, our data suggest that SLC22A17 may play a role in the control of BBB function after cerebral ischemia. These findings may offer a novel mechanism and target for ameliorating BBB injury and edema after stroke.


Asunto(s)
Barrera Hematoencefálica , Isquemia Encefálica , Uniones Estrechas , Animales , Ratones , Humanos , Uniones Estrechas/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Isquemia Encefálica/genética , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Muerte Celular , Masculino , Proteínas de Transporte de Catión Orgánico/metabolismo , Proteínas de Transporte de Catión Orgánico/genética , Ratones Endogámicos C57BL , Células Endoteliales/metabolismo
2.
Am J Cancer Res ; 14(3): 1121-1138, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590396

RESUMEN

Autophagy, a highly regulated lysosome-dependent catabolic pathway, has garnered increasing attention because of its role in leukemia resistance. Among the S100 family of small calcium-binding proteins, S100P is differentially expressed in various tumor cell lines, thereby influencing tumor occurrence, invasion, metastasis, and drug resistance. However, the relationship between S100P and autophagy in determining chemosensitivity in leukemia cells remains unexplored. Our investigation revealed a negative correlation between S100P expression and the clinical status in childhood leukemia, with its presence observed in HL-60 and Jurkat cell lines. Suppression of S100P expression resulted in increased cell proliferation and decreased chemosensitivity in leukemia cells, whereas enhancement of S100P expression inhibited cell proliferation and increased chemosensitivity. Additionally, S100P knockdown drastically promoted autophagy, which was subsequently suppressed by S100P upregulation. Moreover, the p53/AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway was found to be functionally associated with S100P-mediated autophagy. Knockdown of S100P expression led to a decrease in p53 and p-mTOR levels and an increase in p-AMPK expression, ultimately promoting autophagy. This effect was reversed by administration of Tenovin-6 (a p53 activator) and Compound C (an AMPK inhibitor). The findings of our in vivo experiments provide additional evidence supporting the aforementioned data. Specifically, S100P inhibition significantly enhanced the growth of HL-60 tumor xenografts and increased the expression of microtubule-associated protein 1 light chain 3 and p-AMPK in nude mice. Consequently, it can be concluded that S100P plays a regulatory role in the chemosensitivity of leukemia cells by modulating the p53/AMPK/mTOR pathway, which controls autophagy in leukemia cells.

3.
Int J Clin Pract ; 2024: 5113990, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38322112

RESUMEN

Objective: We conducted a meticulous bioinformatics analysis leveraging expression data of 226 PANRGs obtained from previous studies, as well as clinical data from AML patients derived from the HOVON database. Methods: Through meticulous data analysis and manipulation, we were able to categorize AML cases into two distinct PANRG clusters and subsequently identify differentially expressed genes (PRDEGs) with prognostic significance. Furthermore, we organized the patient data into two corresponding gene clusters, allowing us to investigate the intricate relationship between the risk score, patient prognosis, and the immune landscape. Results: Our findings disclosed significant associations between the identified PANRGs, gene clusters, patient survival, immune system, and cancer-related biological processes and pathways. Importantly, we successfully constructed a prognostic signature comprising nineteen genes, enabling the stratification of patients into high-risk and low-risk groups based on individually calculated risk scores. Furthermore, we developed a robust and practical nomogram model, integrating the risk score and other pertinent clinical features, to facilitate accurate patient survival prediction. Our comprehensive analysis demonstrated that the high-risk group exhibited notably worse prognosis, with the risk score proving to be significantly correlated with infiltration of most immune cells. The qRT-PCR results revealed significant differential expression patterns of LGR5 and VSIG4 in normal and human leukemia cell lines (HL-60 and MV-4-11). Conclusions: Our findings underscore the potential utility of PANoptosis-based molecular clustering and prognostic signatures as predictive tools for assessing patient survival in AML.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Inmunoterapia , Aprendizaje Automático , Análisis de Datos , Bases de Datos Factuales , Pronóstico
4.
Fish Shellfish Immunol ; 144: 109245, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38000652

RESUMEN

Irisin, a secreted myokine generated by fibronectin type III domain-containing protein 5, has recently shown the potential to alleviate inflammation. Cholecystokinin-octapeptide (CCK-8) is closely associated with the inflammatory factor TNF-α, a central cytokine in inflammatory reactions. However, the interactions between irisin and CCK-8 in regulating TNF-α production and the underlying mechanism have not yet been elucidated. In the present study, irisin treatment inhibited the basal and the CCK-8-induced TNF-α production in vivo. Additionally, neutralizing circulating irisin using an irisin antiserum significantly augmented the CCK-8-induced stimulation of TNF-α levels. Moreover, the incubation of head kidney cells with irisin or CCK-8 has opposite effects on TNF-α secretion. Notably, irisin treatment inhibited basal and CCK-8-stimulated TNF-α release and gene transcription in head kidney cells. Mechanistically, the inhibitory actions of irisin on basal and CCK-8-induced TNF-α production could be negated by co-administered with the selective integrin αVß5 inhibitor cilengitide. In addition, the inhibitory effect of irisin on basal and CCK-8-triggered TNF-α production could be abolished by the inhibition of the nuclear factor-kappa B (NF-κB) signaling pathway. Furthermore, irisin impeded CCK-8-induced phosphorylation and degradation of IκBα, simultaneously inhibiting NF-κB phosphorylation, preventing its translocation into the nucleus, and suppressing its DNA-binding activity induced by CCK-8. Collectively, these results suggest that the inhibitory effect of irisin on TNF-α production caused by CCK-8 is mediated via the integrin αVß5-NF-κB signaling pathways in tilapia.


Asunto(s)
Cíclidos , FN-kappa B , Animales , FN-kappa B/metabolismo , Sincalida/efectos adversos , Factor de Necrosis Tumoral alfa/farmacología , Fibronectinas/genética , Cíclidos/metabolismo , Transducción de Señal , Inflamación/inducido químicamente
5.
Small ; 20(6): e2305766, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37771178

RESUMEN

Although the research on aqueous batteries employing metal as the anode is still mainly focused on the aqueous zinc-ion battery, aqueous iron-ion batteries are considered as promising aqueous batteries owing to the lower cost, higher specific capacity, and better stability. However, the sluggish Fe2+ (de)intercalation leads to unsatisfactory specific capacity and poor electrochemical stability, which makes it difficult to find cathode materials with excellent electrochemical properties. Herein, phenylamine (PA)-intercalated VOPO4 materials with expanded interlayer spacing are synthesized and applied successfully in aqueous iron-ion batteries. Owing to enough diffusion space from the expanded interlayer, which can boost fast Fe2+ diffusion, the aqueous iron-ion battery shows a high specific capacity of 170 mAh g-1 at 0.2 A g-1 , excellent rate performance, and cycle stability (96.2% capacity retention after 2200 cycles). This work provides a new direction for cathode material design in the development of aqueous iron-ion batteries.

6.
iScience ; 26(12): 108393, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38047088

RESUMEN

Ferroptosis is a type of regulated cell death characterized by lipid peroxidation and subsequent damage to the plasma membrane. Here, we report a ferroptosis resistance mechanism involving the upregulation of TXNDC12, a thioredoxin domain-containing protein located in the endoplasmic reticulum. The inducible expression of TXNDC12 during ferroptosis in leukemia cells is inhibited by the knockdown of the transcription factor ATF4, rather than NFE2L2. Mechanistically, TXNDC12 acts to inhibit lipid peroxidation without affecting iron accumulation during ferroptosis. When TXNDC12 is overexpressed, it restores the sensitivity of ATF4-knockdown cells to ferroptosis. Moreover, TXNDC12 plays a GPX4-independent role in inhibiting lipid peroxidation. The absence of TXNDC12 enhances the tumor-suppressive effects of ferroptosis induction in both cell culture and animal models. Collectively, these findings demonstrate an endoplasmic reticulum-based anti-ferroptosis pathway in cancer cells with potential translational applications.

7.
Aging Cell ; 22(11): e13982, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37681451

RESUMEN

Although immunosenescence may result in increased morbidity and mortality, many mammals have evolved effective immune coping strategies to extend their lifespans. Thus, the immune systems of long-lived mammals present unique models to study healthy longevity. To identify the molecular clues of anti-immunosenescence, we first built high-quality reference genome for a long-lived myotis bat, and then compared three long-lived mammals (i.e., bat, naked mole rat, and human) versus the short-lived mammal, mouse, in splenic immune cells at single-cell resolution. A close relationship between B:T cell ratio and immunosenescence was detected, as B:T cell ratio was much higher in mouse than long-lived mammals and significantly increased during aging. Importantly, we identified several iron-related genes that could resist immunosenescence changes, especially the iron chaperon, PCBP1, which was upregulated in long-lived mammals but dramatically downregulated during aging in all splenic immune cell types. Supportively, immune cells of mouse spleens contained more free iron than those of bat spleens, suggesting higher level of ROS-induced damage in mouse. PCBP1 downregulation during aging was also detected in hepatic but not pulmonary immune cells, which is consistent with the crucial roles of spleen and liver in organismal iron recycling. Furthermore, PCBP1 perturbation in immune cell lines would result in cellular iron dyshomeostasis and senescence. Finally, we identified two transcription factors that could regulate PCBP1 during aging. Together, our findings highlight the importance of iron homeostasis in splenic anti-immunosenescence, and provide unique insight for improving human healthspan.


Asunto(s)
Quirópteros , Inmunosenescencia , Humanos , Animales , Ratones , Quirópteros/genética , Bazo/metabolismo , Envejecimiento , Mamíferos/fisiología , Homeostasis
8.
J Transl Med ; 21(1): 606, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679782

RESUMEN

BACKGROUND: The identifying of B-cell lymphoma 2 (Bcl-2) as a therapeutic target has led to a paradigm shift in acute myeloid leukemia (AML) treatment. Pyroptosis is a novel antitumor therapeutic mechanism due to its cytotoxic and immunogenic effects. The combination of venetoclax and hypomethylating agents (HMAs) has been shown to lead to durable responses and significantly improve prognosis in patients with AML. However, our understanding of the mechanisms underlying this combinatorial activity is evolving. METHODS: We investigated whether the Bcl-2 inhibitor venetoclax induces AML cell pyroptosis and identified pyroptosis effector proteins. Via using western blotting, immunoprecipitation, RNA interference, CCK8 assays, and LDH assays, we explored the mechanism underlying the pyroptotic effect. The relationship between the expression of the pyroptosis effector protein GSDME and AML prognosis was investigated. The effect of GSDME demethylation combined with venetoclax treatment on pyroptosis was investigated and confirmed in mouse models and clinical samples. RESULTS: Venetoclax induces pyroptosis that is mediated by caspase-3-dependent GSDME cleavage. Mechanistically, venetoclax upregulates caspase-3 and GSDME cleavage by activating the intrinsic apoptotic pathway. GSDME is downregulated in AML by promoter methylation, and low GSDME expression is significantly associated with poor prognosis, based on public databases and patient sample analysis. In vivo and in vitro experiments showed that GSDME overexpression or HMAs-mediated restoration of GSDME expression significantly increased venetoclax-induced pyroptosis in AML. CONCLUSION: GSDME-mediated pyroptosis may be a novel aspect of the antileukemic effect of Bcl-2 inhibitors. This finding offers new insights into potential biomarkers and therapeutic strategies, identifying an important mechanism explaining the clinical activity of venetoclax and HMAs in AML.


Asunto(s)
Bioensayo , Piroptosis , Animales , Ratones , Caspasa 3 , Proteínas Proto-Oncogénicas c-bcl-2
9.
Protein Cell ; 14(6): 433-447, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37402315

RESUMEN

Molecular knowledge of human gastric corpus epithelium remains incomplete. Here, by integrated analyses using single-cell RNA sequencing (scRNA-seq), spatial transcriptomics, and single-cell assay for transposase accessible chromatin sequencing (scATAC-seq) techniques, we uncovered the spatially resolved expression landscape and gene-regulatory network of human gastric corpus epithelium. Specifically, we identified a stem/progenitor cell population in the isthmus of human gastric corpus, where EGF and WNT signaling pathways were activated. Meanwhile, LGR4, but not LGR5, was responsible for the activation of WNT signaling pathway. Importantly, FABP5 and NME1 were identified and validated as crucial for both normal gastric stem/progenitor cells and gastric cancer cells. Finally, we explored the epigenetic regulation of critical genes for gastric corpus epithelium at chromatin state level, and identified several important cell-type-specific transcription factors. In summary, our work provides novel insights to systematically understand the cellular diversity and homeostasis of human gastric corpus epithelium in vivo.


Asunto(s)
Epigénesis Genética , Mucosa Gástrica , Humanos , Mucosa Gástrica/metabolismo , Cromatina/metabolismo , Células Madre , Epitelio/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo
10.
Chem Commun (Camb) ; 59(55): 8576-8579, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37340786

RESUMEN

The research on aqueous iron-ion batteries (AIIBs) is still in its early stages and highly limited by the lack of suitable cathode materials. In this study, we propose using tunnel-like VO2 as a cathode material, which delivers a high capacity of 198 mA h g-1 at 0.2 A g-1. Besides, the AIIB exhibits appreciable cycling performance, retaining 78.9% of its initial capacity after 200 cycles. The unique structure of VO2 and the multiple valence states of vanadium in VO2 enable the reversible storage of Fe2+ during cycling. This work presents a new choice for the cathode and considerable development prospects in AIIBs.


Asunto(s)
Suministros de Energía Eléctrica , Hierro , Electrodos , Iones , Vanadio
11.
Food Sci Nutr ; 11(5): 2130-2140, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37181298

RESUMEN

P. ginseng (Panax ginseng C. A. Meyer) is a well-known traditional medicine that has been used for thousands of years to treat diseases. However, "ginseng abuse syndrome" (GAS) often occurs due to an inappropriate use such as high-dose or long-term usage of ginseng; information about what causes GAS and how GAS occurs is still lacking. In this study, the critical components that potentially caused GAS were screened through a step-by-step separation strategy, the pro-inflammatory effects of different extracts on messenger RNA (mRNA) or protein expression levels were evaluated in RAW 264.7 macrophages through quantitative real-time polymerase chain reaction (qRT-PCR) or Western blot, respectively. It was found that high-molecular water-soluble substances (HWSS) significantly increased the expression of cytokines (cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and interleukin 6 (IL-6)) and cyclooxygenase 2 (COX-2) protein; gel filtration chromatography fraction 1 (GFC-F1) further purified from HWSS showed prominent pro-inflammatory effects by increasing the transcription of cytokines (COX-2, iNOS, tumor necrosis factor alpha (TNF-α), and interleukin 1ß (IL-1ß)) as well as the expression of COX-2 and iNOS protein. Moreover, GFC-F1 activated nuclear factor-kappa B (NF-кB) (p65 and inhibitor of nuclear factor-kappa B alpha (IκB-α)) and the p38/MAPK (mitogen-activated protein kinase) signaling pathways. On the other hand, the inhibitor of the NF-κB pathway (pyrrolidine dithiocarbamate (PDTC)) reduced GFC-F1-induced nitric oxide (NO) production, while the inhibitors of the MAPK pathways did not. Taken together, GFC-F1 is the potential composition that caused GAS through the production of inflammatory cytokines by activating the NF-кB pathway.

12.
Comput Struct Biotechnol J ; 21: 1606-1620, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36874158

RESUMEN

Short-chain fatty acids (SCFAs) exhibit anticancer activity in cellular and animal models of colon cancer. Acetate, propionate, and butyrate are the three major SCFAs produced from dietary fiber by gut microbiota fermentation and have beneficial effects on human health. Most previous studies on the antitumor mechanisms of SCFAs have focused on specific metabolites or genes involved in antitumor pathways, such as reactive oxygen species (ROS) biosynthesis. In this study, we performed a systematic and unbiased analysis of the effects of acetate, propionate, and butyrate on ROS levels and metabolic and transcriptomic signatures at physiological concentrations in human colorectal adenocarcinoma cells. We observed significantly elevated levels of ROS in the treated cells. Furthermore, significantly regulated signatures were involved in overlapping pathways at metabolic and transcriptomic levels, including ROS response and metabolism, fatty acid transport and metabolism, glucose response and metabolism, mitochondrial transport and respiratory chain complex, one-carbon metabolism, amino acid transport and metabolism, and glutaminolysis, which are directly or indirectly linked to ROS production. Additionally, metabolic and transcriptomic regulation occurred in a SCFAs types-dependent manner, with an increasing degree from acetate to propionate and then to butyrate. This study provides a comprehensive analysis of how SCFAs induce ROS production and modulate metabolic and transcriptomic levels in colon cancer cells, which is vital for understanding the mechanisms of the effects of SCFAs on antitumor activity in colon cancer.

13.
Am J Cancer Res ; 13(2): 436-451, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36895972

RESUMEN

Pyroptosis, a newly discovered mode of programmed cell death (PCD), is important in the regulation of cancer development. High mobility group box 1 (HMGB1) is a non-histone nuclear protein that is closely related to tumor development and chemotherapy resistance. However, whether endogenous HMGB1 regulates pyroptosis in neuroblastoma remains unknown. Here, we showed that HMGB1 showed ubiquitous higher expression in SH-SY5Y cells and clinical tumors, and was positively correlated with the risk factors of patients with neuroblastoma. Knockdown of GSDME or pharmacological inhibition of caspase-3 blocked pyroptosis and cytosolic translocation of HMGB1. Moreover, knockdown of HMGB1 inhibited cisplatin (DDP) or etoposide (VP16)-induced pyroptosis by decreasing GSDME-NT and cleaved caspase-3 expression, resulting in cell blebbing and LDH release. Knockdown of HMGB1 expression increased the sensitivity of SH-SY5Y cells to chemotherapy and switched pyroptosis to apoptosis. Furthermore, the ROS/ERK1/2/caspase-3/GSDME pathway was found to be functionally connected with DDP or VP16-induced pyroptosis. Hydrogen peroxide (H2O2, a ROS agonist) and EGF (an ERK agonist) promoted the cleavage of GSDME and caspase-3 in DDP or VP16 treatment cells, both of which were inhibited by HMGB1 knockdown. Importantly, these data were further supported by the in vivo experiment. Our study suggests that HMGB1 is a novel regulator of pyroptosis via the ROS/ERK1/2/caspase-3/GSDME pathway and a potential drug target for therapeutic interventions in neuroblastoma.

14.
Front Oncol ; 13: 1333812, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38188304

RESUMEN

The link between viruses and cancer has intrigued scientists for decades. Certain viruses have been shown to be vital in the development of various cancers by integrating viral DNA into the host genome and activating viral oncogenes. These viruses include the Human Papillomavirus (HPV), Hepatitis B and C Viruses (HBV and HCV), Epstein-Barr Virus (EBV), and Human T-Cell Leukemia Virus (HTLV-1), which are all linked to the development of a myriad of human cancers. Third-generation sequencing technologies have revolutionized our ability to study viral integration events at unprecedented resolution in recent years. They offer long sequencing capabilities along with the ability to map viral integration sites, assess host gene expression, and track clonal evolution in cancer cells. Recently, researchers have been exploring the application of Oxford Nanopore Technologies (ONT) nanopore sequencing and Pacific BioSciences (PacBio) single-molecule real-time (SMRT) sequencing in cancer research. As viral integration is crucial to the development of cancer via viruses, third-generation sequencing would provide a novel approach to studying the relationship interlinking viral oncogenes, viruses, and cancer. This review article explores the molecular mechanisms underlying viral oncogenesis, the role of viruses in cancer development, and the impact of third-generation sequencing on our understanding of viral integration into the human genome.

15.
Front Pediatr ; 10: 927894, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36545668

RESUMEN

Purpose: Myeloid sarcoma (MS) is a rare extramedullary mass with myeloid expression, which is easy to be missed and misdiagnosed, especially in the pediatric population. We analyze the clinicopathological characteristics, immunophenotypic, cytogenetic, and molecular studies, therapeutic approaches, and outcomes, to optimize the management of such patients. Methods: A retrospective, single-center, case series study of eleven children diagnosed with MS by pathology was performed. Results: The male-to-female ratio was 8:3, and the median age at diagnosis was 7 years. The most commonly involved sites were the skin and orbital region, followed by lymph nodes, central nervous system, and testis. Seven cases (64%) with Class I-MS and four cases (36%) presented as Class II-MS. Immunohistochemically, MPO and CD117 were the most commonly expressed markers, followed by CD33, CD43, CD34, CD68, and lysozyme. Chromosomal abnormalities were detected in 4 patients. Two patients had the presence of deleterious mutations (FLT3, ASXL, KIT, and DHX15) on molecular detection. Ten patients were treated with chemotherapy based on AML regimens. The median follow-up time was 33.5 months in eleven patients. Two patients relapsed, one died, and one lost to follow-up. The 2-year overall survival (OS) rate estimated by Kaplan-Meier curves was 90.9% ± 8.7%, and the event-free survival (EFS) rate was 64.9% ± 16.7%. Conclusions: MS diagnosis is usually challenging. Adequate tumor biopsy and expanded immunohistochemistry are necessary for the correct diagnosis of MS. Early and regular systemic chemotherapy promises long-term survival.

16.
Zhongguo Dang Dai Er Ke Za Zhi ; 24(9): 1036-1041, 2022.
Artículo en Chino | MEDLINE | ID: mdl-36111723

RESUMEN

OBJECTIVES: To study the clinical features of children with rhabdomyosarcoma (RMS) and the influencing factors for prognosis. METHODS: A retrospective analysis was performed on the clinical and follow-up data of 20 children with RMS who were admitted to the Department of Pediatric Hematology, Xiangya Hospital of Central South University, from June 2014 to September 2020. RESULTS: The most common clinical symptoms of the 20 children with RMS at the first visit were painless mass (13/20, 65%), exophthalmos (4/20, 20%), and abdominal pain (3/20, 15%). According to the staging criteria of Intergroup Rhabdomyosarcoma Study Group (IRSG), there was 1 child (5%) with stage I RMS, 4 (20%) with stage II RMS, 9 (45%) with stage III RMS, and 6 (30%) with stage IV RMS. The median follow-up time was 19 months for the 20 children (range: 3-93 months), with a 2-year overall survival (OS) rate of 79.5% (95%CI: 20.1-24.3) and a 2-year event-free survival (EFS) rate of 72.0% (95%CI: 19.5-23.9). Pleomorphic RMS was associated with the reduced 2-year OS rate (P<0.05), and distant metastasis, IRSG stage IV RMS, and high-risk RMS were associated with the reduced 2-year EFS rate (P<0.05). CONCLUSIONS: RMS has no specific clinical symptoms at the first visit, with painless mass as the most common symptom. Distant metastasis, IRSG stage, and risk degree may be associated with the prognosis of children with RMS.


Asunto(s)
Rabdomiosarcoma Embrionario , Rabdomiosarcoma , Niño , Humanos , Pronóstico , Estudios Retrospectivos , Rabdomiosarcoma/diagnóstico , Rabdomiosarcoma/terapia , Tasa de Supervivencia
17.
Chem Commun (Camb) ; 58(55): 7702-7705, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35726594

RESUMEN

The development of aqueous potassium-ion batteries is limited by the lack of suitable anode materials. Here, a novel anode material, iron phosphate hydroxide hydrate Fe1.19PO4(OH)0.18(H2O)0.3, was introduced and synthesized, which delivers considerable reversible capacities of 80 mA h g-1 at 0.05 A g-1. An aqueous full potassium-ion battery assembled with the K2Zn3(Fe(CN)6)2 cathode exhibits 80% capacity retention after 1000 cycles.

18.
BMC Pulm Med ; 22(1): 259, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35768814

RESUMEN

BACKGROUND: The expression profiles and molecular mechanisms of CXC chemokine receptors (CXCRs) in Lung adenocarcinoma (LUAD) have been extensively explored. However, the comprehensive prognostic values of CXCR members in LUAD have not yet been clearly identified. METHODS: Multiple available datasets, including Oncomine datasets, the cancer genome atlas (TCGA), HPA platform, GeneMANIA platform, DAVID platform and the tumor immune estimation resource (TIMER) were used to detect the expression of CXCRs in LUAD, as well as elucidate the significance and value of novel CXCRs-associated genes and signaling pathways in LUAD. RESULTS: The mRNA and/or protein expression of CXCR1, CXCR2, CXCR3, CXCR4, CXCR5 and CXCR6 displayed predominantly decreased in LUAD tissues as compared to normal tissues. On the contrary, compared with the normal tissues, the expression of CXCR7 was significantly increased in LUAD tissues. Subsequently, we constructed a network including CXCR family members and their 20 related genes, and the related GO functions assay showed that CXCRs connected with these genes participated in the process of LUAD through several signal pathways including Chemokine signaling pathway, Cytokine-cytokine receptor interaction and Neuroactive ligand-receptor interaction. TCGA and Timer platform revealed that the mRNA expression of CXCR family members was significantly related to individual cancer stages, cancer subtypes, patient's gender and the immune infiltration level. Finally, survival analysis showed that low mRNA expression levels of CXCR2 (HR = 0.661, and Log-rank P = 1.90e-02), CXCR3 (HR = 0.674, and Log-rank P = 1.00e-02), CXCR4 (HR = 0.65, and Log-rank P = 5.01e-03), CXCR5 (HR = 0.608, and Log-rank P = 4.80e-03) and CXCR6 (HR = 0.622, and Log-rank P = 1.85e-03) were significantly associated with shorter overall survival (OS), whereas high CXCR7 mRNA expression (HR = 1.604, and Log-rank P = 4.27e-03) was extremely related with shorter OS in patients. CONCLUSION: Our findings from public databases provided a unique insight into expression characteristics and prognostic values of CXCR members in LUAD, which would be benefit for the understanding of pathogenesis, diagnosis, prognosis prediction and targeted treatment in LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Adenocarcinoma/patología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Humanos , Neoplasias Pulmonares/patología , Pronóstico , ARN Mensajero/genética , ARN Mensajero/metabolismo
19.
Biosci Rep ; 41(12)2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34870709

RESUMEN

CXCL3 plays extensive roles in tumorigenesis in various types of human cancers through its roles in tumor cell differentiation, invasion, and migration. However, the mechanisms of CXCL3 in head and neck squamous cell carcinoma (HNSCC) remain unclear. In our study, multiple databases were used to explore the expression level, prognostic value, and related mechanisms of CXCL3 in human HNSCC through bioinformatic methods. We also performed further experiments in vivo and in vitro to evaluate the expression of CXCL3 in a human head and neck tissue microarray and the underlying effect mechanisms of CXCL3 on the tumor biology of HNSCC tumor cells. The result showed that the expression level of CXCL3 in patients with HNSCC was significantly higher as compared with that in normal tissues (P<0.05). Kaplan-Meier survival analysis demonstrated that patients with high CXCL3 expression had a lower overall survival rate (P=0.038). CXCL3 was further identified as an independent prognostic factor for HNSCC patients by Cox regression analysis, and GSEA exhibited that several signaling pathways including Apoptosis, Toll-like receptor, Nod-like receptor, Jak-STAT, and MAPK signaling pathways may be involved in the tumorigenesis of HNSCC. CAL27 cells overexpressing or HNSCC cells treated with exogenous CXCL3 exhibited enhanced cell malignant behaviors, whereas down-regulating CXCL3 expression resulted in decreased malignant behaviors in HSC4 cells. In addition, CXCL3 may affect the expression of several genes, including ERK1/2, Bcl-2, Bax, STAT3, and NF-κB. In summary, our bioinformatics and experiment findings effectively suggest the information of CXCL3 expression, roles, and the potential regulatory network in HNSCC.


Asunto(s)
Quimiocinas CXC/metabolismo , Neoplasias de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Adulto , Apoptosis , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Quimiocinas CXC/genética , Biología Computacional , Bases de Datos Genéticas , Femenino , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Humanos , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Transducción de Señal , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
20.
J Exp Bot ; 71(4): 1294-1305, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-31701134

RESUMEN

Plant height is an important trait for architecture patterning and crop yield improvement. Although the pathways involving gibberellins and brassinosteroids have been well studied, there are still many gaps in our knowledge of the networks that control plant height. In this study, we determined that a dominant photoperiod- and thermo-sensitive dwarf mutant is caused by the active role of a mutated gene Photoperiod-thermo-sensitive dwarfism 1 (Ptd1), the wild-type of which encodes a non-specific lipid transfer protein (nsLTP). Ptd1 plants showed severe dwarfism under long-day and low-temperature conditions, but grew almost normal under short-day and high-temperature conditions. These phenotypic variations were associated with Ptd1 mRNA levels and accumulation of the corresponding protein. Furthermore, we found that the growth inhibition in Ptd1 may result from the particular protein conformation of Ptd1 due to loss of two disulfide bonds in the eight-cysteine motif (8-CM) that is conserved among nsLTPs. These results contribute to our understanding of the novel function of disulfide bonds in the 8-CM, and provide a potential new strategy for regulation of cell development and plant height by modifying the amino acid residues involved in protein conformation patterning.


Asunto(s)
Oryza , Fotoperiodo , Proteínas de Plantas/metabolismo , Proteínas Portadoras , Cisteína , Regulación de la Expresión Génica de las Plantas , Calor , Oryza/genética , Oryza/crecimiento & desarrollo , Proteínas de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA