Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Nanobiotechnology ; 22(1): 411, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997706

RESUMEN

The fracture healing outcome is largely dependent on the quantities as well as osteogenic differentiation capacities of mesenchymal stem cells (MSCs) at the lesion site. Herein, macrophage membrane (MM)-reversibly cloaked nanocomplexes (NCs) are engineered for the lesion-targeted and hierarchical co-delivery of short stromal derived factor-1α peptide (sSDF-1α) and Ckip-1 small interfering RNA (Ckip-1 siRNA, siCkip-1) to promote bone repair by concurrently fostering recruitment and osteogenic differentiation of endogenous MSCs. To construct the NCs, a membrane-penetrating α-helical polypeptide first assembles with siCkip-1, and the cationic NCs are sequentially coated with catalase and an outer shell of sSDF-1α-anchored MM. Due to MM-assisted inflammation homing, intravenously injected NCs could efficiently accumulate at the fractured femur, where catalase decomposes the local hydrogen peroxide to generate oxygen bubbles that drives the shedding of sSDF-1α-anchored MM in the extracellular compartment. The exposed, cationic inner core thus enables robust trans-membrane delivery into MSCs to induce Ckip-1 silencing. Consequently, sSDF-1α-guided MSCs recruitment cooperates with siCkip-1-mediated osteogenic differentiation to facilitate bone formation and accelerate bone fracture healing. This study provides an enlightened strategy for the hierarchical co-delivery of macromolecular drugs into different cellular compartments, and it also renders a promising modality for the management of fracture healing.


Asunto(s)
Diferenciación Celular , Curación de Fractura , Macrófagos , Células Madre Mesenquimatosas , Osteogénesis , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Osteogénesis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Animales , Curación de Fractura/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Ratones , ARN Interferente Pequeño , Masculino , Membrana Celular/metabolismo , Humanos , Células RAW 264.7
2.
Small Methods ; 7(9): e2300667, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37469217

RESUMEN

During rheumatoid arthritis (RA) development, over-produced proinflammatory cytokines represented by tumor necrosis factor-α (TNF-α) and reactive oxygen species (ROS) represented by H2 O2 form a self-promoted cycle to exacerbate the synovial inflammation and tissue damage. Herein, biomimetic nanocomplexes (NCs) reversibly cloaked with macrophage membrane (RM) are developed for effective RA management via dual scavenging of TNF-α and ROS. To construct the NCs, membrane-penetrating, helical polypeptide first condenses TNF-α siRNA (siTNF-α) and forms the cationic inner core, which further adsorbs catalase (CAT) via electrostatic interaction followed by surface coating with RM. The membrane-coated NCs enable prolonged blood circulation and active joint accumulation after systemic administration in Zymosan A-induced arthritis mice. In the oxidative microenvironment of joints, CAT degrades H2 O2 to produce O2 bubbles, which shed off the outer membrane layer to expose the positively charged inner core, thus facilitating effective intracellular delivery into macrophages. siRNA-mediated TNF-α silencing and CAT-mediated H2 O2 scavenging then cooperate to inhibit inflammation and alleviate oxidative stress, remodeling the osteomicroenvironment and fostering tissue repair. This study provides an enlightened strategy to resolve the blood circulation/cell internalization dilemma of cell membrane-coated nanosystems, and it renders a promising modality for RA treatment.


Asunto(s)
Antioxidantes , Artritis Reumatoide , Ratones , Animales , Antioxidantes/efectos adversos , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Especies Reactivas de Oxígeno/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Macrófagos , Antiinflamatorios/efectos adversos , Inflamación , ARN Interferente Pequeño/uso terapéutico
3.
Cell Death Dis ; 11(9): 763, 2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32938906

RESUMEN

Monocyte-derived cells were shown to promote cartilage repair in osteoarthritis. The role of the long non-coding RNA (lncRNA) MM2P in this function of monocyte-derived cells remained unexplored. Treatment of RAW264.7 murine macrophages and mouse bone marrow-derived macrophages with IL-4 or IL-13 upregulated MM2P expression, upstream of STAT3 and STAT6 phosphorylation. Specifically, MM2P blocked SHP2-mediated dephosphorylation of STAT3 at Try705 and interacted with the RNA-binding protein FUS. In turn, p-STAT3 increased the Sox9 gene expression. These cells released Sox9 mRNA and protein-containing exosomes, as demonstrated by a transmission electron microscope, nanoparticle tracking analysis, and detection of typical surface markers. Their culture supernatant promoted the differentiation of mouse primary chondrocytes, i.e., upregulated the expression of Col1a2 and Acan genes and promoted the secretion of extracellular matrix components proteoglycan and type II collagen. These effects were mediated by Sox9 mRNA and protein delivered to chondrocytes by exosomes. Together, ex vivo treatment of monocyte-derived cells with IL-4 or IL-13 promoted chondrocyte differentiation and functions through exosome-mediated delivery of Sox9 mRNA and protein.


Asunto(s)
Condrocitos/metabolismo , Exosomas/metabolismo , Monocitos/metabolismo , ARN Largo no Codificante/genética , Factor de Transcripción SOX9/metabolismo , Animales , Cartílago Articular/metabolismo , Diferenciación Celular/genética , Condrogénesis/genética , Condrogénesis/fisiología , Células Madre Mesenquimatosas/metabolismo , Ratones , Osteoartritis/metabolismo , Proteoglicanos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA