Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Clin Virol ; 92: 53-55, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28531552

RESUMEN

BACKGROUND: Respiratory viral infections are a significant problem in patients with hematologic malignancies. We report a cluster of HPIV 3 infections in our myeloma patients, and describe the utility of next generation sequencing (NGS) to identify transmission linkages which can assist in infection prevention. OBJECTIVES: To evaluate the utility of NGS to track respiratory viral infection outbreaks and delineate between community acquired and nosocomial infections in our cancer units. STUDY DESIGN: Retrospective chart review conducted at a single site. All patients diagnosed with multiple myeloma who developed symptoms suggestive of upper respiratory tract infection (URTI) or lower respiratory tract infection (LRTI) along with a respiratory viral panel (RVP) test positive for HPIV 3 between April 1, 2016, to June 30, 2016, were included. Sequencing was performed on the Illumina MiSeq™. To gain understanding regarding community strains of HPIV 3 during the same season, we also performed NGS on HPIV3 strains isolated from pediatric cases. RESULTS: We saw a cluster of 13 cases of HPIV3 infections in the myeloma unit. Using standard epidemiologic criteria, 3 cases were considered community acquired, 7 cases developed infection during treatment in the cancer infusion center, while an additional 3 developed infections during hospital stay. Seven patients required hospitalization for a median duration of 20days. NGS enabled sensitive discrimination of the relatedness of the isolates obtained during the outbreak and provided evidence for source of transmission. Two hospital onset infections could be tracked to an index case; the genome sequences of HPIV 3 strains from these 3 patients only differed by a single nucleotide. CONCLUSIONS: NGS offers a significantly higher discriminatory value as an epidemiologic tool, and can be used to gather real-time information and identification of transmission linkages to assist in infection prevention in immunocompromised patients.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Huésped Inmunocomprometido , Mieloma Múltiple/complicaciones , Virus de la Parainfluenza 3 Humana/genética , Infecciones por Respirovirus/prevención & control , Niño , Infección Hospitalaria/epidemiología , Infección Hospitalaria/prevención & control , Infección Hospitalaria/virología , Femenino , Genoma Viral , Humanos , Masculino , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/virología , Infecciones por Respirovirus/epidemiología , Infecciones por Respirovirus/transmisión , Infecciones por Respirovirus/virología , Estudios Retrospectivos
2.
J Neurosci Res ; 95(4): 1025-1035, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27452502

RESUMEN

Traumatic brain injury (TBI) is a major public health issue, with recently increased awareness of the potential long-term sequelae of repetitive injury. Although TBI is common, objective diagnostic tools with sound neurobiological predictors of outcome are lacking. Indeed, such tools could help to identify those at risk for more severe outcomes after repetitive injury and improve understanding of biological underpinnings to provide important mechanistic insights. We tested the hypothesis that acute and subacute pathological injury, including the microgliosis that results from repeated mild closed head injury (rmCHI), is reflected in susceptibility-weighted magnetic resonance imaging and diffusion-tensor imaging microstructural abnormalities. Using a combination of high-resolution magnetic resonance imaging, stereology, and quantitative PCR, we studied the pathophysiology of male mice that sustained seven consecutive mild traumatic brain injuries over 9 days in acute (24 hr) and subacute (1 week) time periods. rmCHI induced focal cortical microhemorrhages and impaired axial diffusivity at 1 week postinjury. These microstructural abnormalities were associated with a significant increase in microglia. Notably, microgliosis was accompanied by a change in inflammatory microenvironment defined by robust spatiotemporal alterations in tumor necrosis factor-α receptor mRNA. Together these data contribute novel insight into the fundamental biological processes associated with repeated mild brain injury concomitant with subacute imaging abnormalities in a clinically relevant animal model of repeated mild TBI. These findings suggest new diagnostic techniques that can be used as biomarkers to guide the use of future protective or reparative interventions. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Lesiones Traumáticas del Encéfalo/patología , Encéfalo/patología , Microglía/patología , Fibras Nerviosas Mielínicas/patología , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Proteínas de Unión al Calcio/metabolismo , Citocinas/genética , Citocinas/metabolismo , Imagen de Difusión Tensora , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/fisiología , Hemorragias Intracraneales/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/metabolismo , Microglía/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , ARN Mensajero/metabolismo , Estadísticas no Paramétricas
3.
J Neurosurg Pediatr ; 17(6): 739-55, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26894518

RESUMEN

OBJECTIVE Traumatic brain injury (TBI) is a leading cause of death and severe morbidity for otherwise healthy full-term infants around the world. Currently, the primary treatment for infant TBI is supportive, as no targeted therapies exist to actively promote recovery. The developing infant brain, in particular, has a unique response to injury and the potential for repair, both of which vary with maturation. Targeted interventions and objective measures of therapeutic efficacy are needed in this special population. The authors hypothesized that MRI and serum biomarkers can be used to quantify outcomes following infantile TBI in a preclinical rat model and that the potential efficacy of the neuro-reparative agent erythropoietin (EPO) in promoting recovery can be tested using these biomarkers as surrogates for functional outcomes. METHODS With institutional approval, a controlled cortical impact (CCI) was delivered to postnatal Day (P)12 rats of both sexes (76 rats). On postinjury Day (PID)1, the 49 CCI rats designated for chronic studies were randomized to EPO (3000 U/kg/dose, CCI-EPO, 24 rats) or vehicle (CCI-veh, 25 rats) administered intraperitoneally on PID1-4, 6, and 8. Acute injury (PID3) was evaluated with an immunoassay of injured cortex and serum, and chronic injury (PID13-28) was evaluated with digitized gait analyses, MRI, and serum immunoassay. The CCI-veh and CCI-EPO rats were compared with shams (49 rats) primarily using 2-way ANOVA with Bonferroni post hoc correction. RESULTS Following CCI, there was 4.8% mortality and 55% of injured rats exhibited convulsions. Of the injured rats designated for chronic analyses, 8.1% developed leptomeningeal cyst-like lesions verified with MRI and were excluded from further study. On PID3, Western blot showed that EPO receptor expression was increased in the injured cortex (p = 0.008). These Western blots also showed elevated ipsilateral cortex calpain degradation products for αII-spectrin (αII-SDPs; p < 0.001), potassium chloride cotransporter 2 (KCC2-DPs; p = 0.037), and glial fibrillary acidic protein (GFAP-DPs; p = 0.002), as well as serum GFAP (serum GFAP-DPs; p = 0.001). In injured rats multiplex electrochemiluminescence analyses on PID3 revealed elevated serum tumor necrosis factor alpha (TNFα p = 0.01) and chemokine (CXC) ligand 1 (CXCL1). Chronically, that is, in PID13-16 CCI-veh rats, as compared with sham rats, gait deficits were demonstrated (p = 0.033) but then were reversed (p = 0.022) with EPO treatment. Diffusion tensor MRI of the ipsilateral and contralateral cortex and white matter in PID16-23 CCI-veh rats showed widespread injury and significant abnormalities of functional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD); MD, AD, and RD improved after EPO treatment. Chronically, P13-P28 CCI-veh rats also had elevated serum CXCL1 levels, which normalized in CCI-EPO rats. CONCLUSIONS Efficient translation of emerging neuro-reparative interventions dictates the use of age-appropriate preclinical models with human clinical trial-compatible biomarkers. In the present study, the authors showed that CCI produced chronic gait deficits in P12 rats that resolved with EPO treatment and that chronic imaging and serum biomarkers correlated with this improvement.


Asunto(s)
Biomarcadores/sangre , Lesiones Traumáticas del Encéfalo/sangre , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Eritropoyetina/uso terapéutico , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Factores de Edad , Animales , Animales Recién Nacidos , Lesiones Traumáticas del Encéfalo/complicaciones , Calpaína/metabolismo , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Citocinas/sangre , Imagen de Difusión por Resonancia Magnética , Modelos Animales de Enfermedad , Epoetina alfa/metabolismo , Femenino , Trastornos Neurológicos de la Marcha/tratamiento farmacológico , Trastornos Neurológicos de la Marcha/etiología , Proteína Ácida Fibrilar de la Glía/metabolismo , Procesamiento de Imagen Asistido por Computador , Masculino , Ratas , Receptores de Eritropoyetina/metabolismo , Estadísticas no Paramétricas , Simportadores , Factores de Tiempo , Cotransportadores de K Cl
4.
Trends Immunol ; 36(2): 92-101, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25616716

RESUMEN

Owing to its abundance in inflammatory settings, interleukin IL-6 is frequently viewed as a proinflammatory cytokine, with functions that parallel those of tumor necrosis factor (TNF) and IL-1ß in the context of inflammation. However, accumulating evidence points to a broader role for IL-6 in a variety of (patho)physiological conditions, including functions related to the resolution of inflammation. We review recent findings on the complex biological functions governed by IL-6 signaling, focusing on its role in inflammation-associated cancer and metabolic disorders such as obesity and type 2 diabetes mellitus (T2DM). We propose that the anti-inflammatory functions of IL-6 may extend to multiple settings and cell types, and suggest that these dimensions should be incorporated in therapeutic approaches to these diseases. Finally, we outline important areas of inquiry towards understanding this pleiotropic cytokine.


Asunto(s)
Interleucina-6/metabolismo , Neoplasias/metabolismo , Animales , Regulación de la Expresión Génica , Humanos , Hígado/metabolismo , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Músculo Esquelético/metabolismo , Neoplasias/genética , Neoplasias/inmunología , Obesidad/genética , Obesidad/inmunología , Obesidad/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA