Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Eur J Immunol ; 53(9): e2250355, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36991561

RESUMEN

The lymph node (LN) is home to resident macrophage populations that are essential for immune function and homeostasis, but key factors controlling this niche are undefined. Here, we show that fibroblastic reticular cells (FRCs) are an essential component of the LN macrophage niche. Genetic ablation of FRCs caused rapid loss of macrophages and monocytes from LNs across two in vivo models. Macrophages co-localized with FRCs in human LNs, and murine single-cell RNA-sequencing revealed that FRC subsets broadly expressed master macrophage regulator CSF1. Functional assays containing purified FRCs and monocytes showed that CSF1R signaling was sufficient to support macrophage development. These effects were conserved between mouse and human systems. These data indicate an important role for FRCs in maintaining the LN parenchymal macrophage niche.


Asunto(s)
Fibroblastos , Transducción de Señal , Ratones , Humanos , Animales , Macrófagos , Ganglios Linfáticos
2.
Cell Rep ; 30(3): 611-619.e4, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31968240

RESUMEN

The germinal center (GC) response is critical for generating high-affinity humoral immunity and immunological memory, which forms the basis of successful immunization. Control of the GC response is thought to require follicular regulatory T (Tfr) cells, a subset of suppressive Foxp3+ regulatory T cells located within GCs. Relatively little is known about the exact role of Tfr cells within the GC and how they exert their suppressive function. A unique feature of Tfr cells is their reported CXCR5-dependent localization to the GC. Here, we show that the lack of CXCR5 on Foxp3+ regulatory T cells results in a reduced frequency, but not an absence, of GC-localized Tfr cells. This reduction in Tfr cells is not sufficient to alter the magnitude or output of the GC response. This demonstrates that additional, CXCR5-independent mechanisms facilitate Treg cell homing to the GC.


Asunto(s)
Centro Germinal/inmunología , Receptores CXCR5/metabolismo , Linfocitos T Reguladores/inmunología , Animales , Factores de Transcripción Forkhead/metabolismo , Eliminación de Gen , Recuento de Linfocitos , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/inmunología
3.
J Exp Med ; 216(10): 2242-2252, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31324739

RESUMEN

The induction of adaptive immunity is dependent on the structural organization of LNs, which is in turn governed by the stromal cells that underpin LN architecture. Using a novel fate-mapping mouse model, we trace the developmental origin of mesenchymal LN stromal cells (mLNSCs) to a previously undescribed embryonic fibroblast activation protein-α (FAP)+ progenitor. FAP+ cells of the LN anlagen express lymphotoxin ß receptor (LTßR) and vascular cell adhesion molecule (VCAM), but not intercellular adhesion molecule (ICAM), suggesting they are early mesenchymal lymphoid tissue organizer (mLTo) cells. Clonal labeling shows that FAP+ progenitors locally differentiate into mLNSCs. This process is also coopted in nonlymphoid tissues in response to infection to facilitate the development of tertiary lymphoid structures, thereby mimicking the process of LN ontogeny in response to infection.


Asunto(s)
Embrión de Mamíferos/inmunología , Gelatinasas/inmunología , Ganglios Linfáticos/inmunología , Proteínas de la Membrana/inmunología , Células Madre Mesenquimatosas/inmunología , Modelos Inmunológicos , Serina Endopeptidasas/inmunología , Animales , Embrión de Mamíferos/citología , Endopeptidasas , Gelatinasas/genética , Ganglios Linfáticos/citología , Receptor beta de Linfotoxina/genética , Receptor beta de Linfotoxina/inmunología , Proteínas de la Membrana/genética , Células Madre Mesenquimatosas/citología , Ratones , Ratones Transgénicos , Serina Endopeptidasas/genética , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/inmunología
4.
Cancer Res ; 79(14): 3557-3569, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31088837

RESUMEN

Metabolic imaging has been widely used to measure the early responses of tumors to treatment. Here, we assess the abilities of PET measurement of [18F]FDG uptake and MRI measurement of hyperpolarized [1-13C]pyruvate metabolism to detect early changes in glycolysis following treatment-induced cell death in human colorectal (Colo205) and breast adenocarcinoma (MDA-MB-231) xenografts in mice. A TRAIL agonist that binds to human but not mouse cells induced tumor-selective cell death. Tumor glycolysis was assessed by injecting [1,6-13C2]glucose and measuring 13C-labeled metabolites in tumor extracts. Injection of hyperpolarized [1-13C]pyruvate induced rapid reduction in lactate labeling. This decrease, which correlated with an increase in histologic markers of cell death and preceded decrease in tumor volume, reflected reduced flux from glucose to lactate and decreased lactate concentration. However, [18F]FDG uptake and phosphorylation were maintained following treatment, which has been attributed previously to increased [18F]FDG uptake by infiltrating immune cells. Quantification of [18F]FDG uptake in flow-sorted tumor and immune cells from disaggregated tumors identified CD11b+/CD45+ macrophages as the most [18F]FDG-avid cell type present, yet they represented <5% of the cells present in the tumors and could not explain the failure of [18F]FDG-PET to detect treatment response. MRI measurement of hyperpolarized [1-13C]pyruvate metabolism is therefore a more sensitive marker of the early decreases in glycolytic flux that occur following cell death than PET measurements of [18F]FDG uptake. SIGNIFICANCE: These findings demonstrate superior sensitivity of MRI measurement of hyperpolarized [1-13C]pyruvate metabolism versus PET measurement of 18F-FDG uptake for detecting early changes in glycolysis following treatment-induced tumor cell death.


Asunto(s)
Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Adenocarcinoma/diagnóstico , Adenocarcinoma/metabolismo , Animales , Antineoplásicos/farmacología , Isótopos de Carbono , Muerte Celular/fisiología , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Femenino , Fluorodesoxiglucosa F18/farmacocinética , Glucólisis/efectos de los fármacos , Xenoinjertos , Humanos , Ácido Láctico/metabolismo , Imagen por Resonancia Magnética/métodos , Ratones Endogámicos BALB C , Ratones Desnudos , Tomografía de Emisión de Positrones/métodos , Ácido Pirúvico/metabolismo , Radiofármacos/farmacocinética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/agonistas , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
5.
J Exp Med ; 216(3): 621-637, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30723095

RESUMEN

Ectopic lymphoid structures form in a wide range of inflammatory conditions, including infection, autoimmune disease, and cancer. In the context of infection, this response can be beneficial for the host: influenza A virus infection-induced pulmonary ectopic germinal centers give rise to more broadly cross-reactive antibody responses, thereby generating cross-strain protection. However, despite the ubiquity of ectopic lymphoid structures and their role in both health and disease, little is known about the mechanisms by which inflammation is able to convert a peripheral tissue into one that resembles a secondary lymphoid organ. Here, we show that type I IFN produced after viral infection can induce CXCL13 expression in a phenotypically distinct population of lung fibroblasts, driving CXCR5-dependent recruitment of B cells and initiating ectopic germinal center formation. This identifies type I IFN as a novel inducer of CXCL13, which, in combination with other stimuli, can promote lung remodeling, converting a nonlymphoid tissue into one permissive to functional tertiary lymphoid structure formation.


Asunto(s)
Quimiocina CXCL13/metabolismo , Centro Germinal/patología , Interferón Tipo I/metabolismo , Infecciones por Orthomyxoviridae/patología , Animales , Linfocitos B/metabolismo , Linfocitos B/patología , Quimiocina CXCL13/genética , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Fibroblastos/virología , Centro Germinal/efectos de los fármacos , Centro Germinal/metabolismo , Interferón beta/farmacología , Pulmón/metabolismo , Pulmón/patología , Pulmón/virología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Infecciones por Orthomyxoviridae/metabolismo , Receptores CXCR5/genética , Receptores CXCR5/metabolismo , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/patología
6.
Adv Exp Med Biol ; 1060: 99-114, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30155624

RESUMEN

The tumor microenvironment comprises a mass of heterogeneous cell types, including immune cells, endothelial cells, and fibroblasts, alongside cancer cells. It is increasingly becoming clear that the development of this support niche is critical to the continued uncontrolled growth of the cancer. The tumor microenvironment contributes to the maintenance of cancer stemness and also directly promotes angiogenesis, invasion, metastasis, and chronic inflammation. In this chapter, we describe on the role of fibroblasts, specifically termed cancer-associated fibroblasts (CAFs), in the promotion and maintenance of cancers. CAFs have a multitude of effects on the growth and maintenance of cancer, and here we focus on their roles in modulating immune cells and responses; CAFs both inhibit immune cell access to the tumor microenvironment and inhibit their functions within the tumor. Finally, we describe the potential modulation of CAF function as an adjunct to bolster the effectiveness of cancer immunotherapies.


Asunto(s)
Células del Estroma/patología , Microambiente Tumoral , Animales , Resistencia a Antineoplásicos , Humanos , Neoplasias/irrigación sanguínea , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/patología , Neovascularización Patológica/patología , Células del Estroma/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos
7.
PLoS One ; 12(9): e0184732, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28886201

RESUMEN

TNF is a pro-inflammatory cytokine produced by both lymphoid and non-lymphoid cells. As a consequence of the widespread expression of its receptors (TNFR1 and 2), TNF plays a role in many important biological processes. In the context of influenza A virus (IAV) infection, TNF has variably been implicated in mediating immunopathology as well as suppression of the immune response. Although a number of cell types are able to produce TNF, the ability of CD8+ T cells to produce TNF following viral infection is a hallmark of their effector function. As such, the regulation and role of CD8+ T cell-derived TNF following viral infection is of great interest. Here, we show that the biphasic production of TNF by CD8+ T cells following in vitro stimulation corresponds to distinct patterns of epigenetic modifications. Further, we show that a global loss of TNF during IAV infection results in an augmentation of the peripheral virus-specific CD8+ T cell response. Subsequent adoptive transfer experiments demonstrated that this attenuation of the CD8+ T cell response was largely, but not exclusively, conferred by extrinsic TNF, with intrinsically-derived TNF making only modest contributions. In conclusion, TNF exerts an immunoregulatory role on CD8+ T cell responses following IAV infection, an effect that is largely mediated by extrinsically-derived TNF.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Receptores del Factor de Necrosis Tumoral/metabolismo , Animales , Inmunoprecipitación de Cromatina , Femenino , Virus de la Influenza A/patogenicidad , Ratones , Ratones Endogámicos C57BL , ARN Polimerasa II/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo
8.
Cell Metab ; 24(5): 672-684, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27829137

RESUMEN

In patients with cancer, the wasting syndrome, cachexia, is associated with caloric deficiency. Here, we describe tumor-induced alterations of the host metabolic response to caloric deficiency that cause intratumoral immune suppression. In pre-cachectic mice with transplanted colorectal cancer or autochthonous pancreatic ductal adenocarcinoma (PDA), we find that IL-6 reduces the hepatic ketogenic potential through suppression of PPARalpha, the transcriptional master regulator of ketogenesis. When these mice are challenged with caloric deficiency, the resulting relative hypoketonemia triggers a marked rise in glucocorticoid levels. Multiple intratumoral immune pathways are suppressed by this hormonal stress response. Moreover, administering corticosterone to elevate plasma corticosterone to a level that is lower than that occurring in cachectic mice abolishes the response of mouse PDA to an immunotherapy that has advanced to clinical trials. Therefore, tumor-induced IL-6 impairs the ketogenic response to reduced caloric intake, resulting in a systemic metabolic stress response that blocks anti-cancer immunotherapy.


Asunto(s)
Reprogramación Celular , Inmunidad , Interleucina-6/metabolismo , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Animales , Caquexia/inmunología , Caquexia/metabolismo , Caquexia/patología , Restricción Calórica , Glucocorticoides/metabolismo , Inmunoterapia , Interleucina-6/deficiencia , Cetosis/complicaciones , Cetosis/patología , Hígado/metabolismo , Masculino , Ratones Endogámicos BALB C , Pruebas de Neutralización , Neoplasias Pancreáticas/patología , Estrés Fisiológico , Neoplasias Pancreáticas
9.
Elife ; 32014 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-25347065

RESUMEN

The co-stimulatory molecule CD28 is essential for activation of helper T cells. Despite this critical role, it is not known whether CD28 has functions in maintaining T cell responses following activation. To determine the role for CD28 after T cell priming, we generated a strain of mice where CD28 is removed from CD4(+) T cells after priming. We show that continued CD28 expression is important for effector CD4(+) T cells following infection; maintained CD28 is required for the expansion of T helper type 1 cells, and for the differentiation and maintenance of T follicular helper cells during viral infection. Persistent CD28 is also required for clearance of the bacterium Citrobacter rodentium from the gastrointestinal tract. Together, this study demonstrates that CD28 persistence is required for helper T cell polarization in response to infection, describing a novel function for CD28 that is distinct from its role in T cell priming.


Asunto(s)
Antígenos CD28/metabolismo , Citrobacter rodentium/fisiología , Reactividad Cruzada/inmunología , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/microbiología , Inmunidad , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Diferenciación Celular , Proliferación Celular , Factores de Transcripción Forkhead/metabolismo , Inmunidad Celular , Virus de la Influenza A/fisiología , Integrasas/metabolismo , Ligandos , Ratones , Infecciones por Orthomyxoviridae/inmunología , Receptores OX40/metabolismo , Transducción de Señal/inmunología
10.
J Exp Med ; 210(6): 1137-51, 2013 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-23712428

RESUMEN

Fibroblast activation protein-α (FAP) identifies stromal cells of mesenchymal origin in human cancers and chronic inflammatory lesions. In mouse models of cancer, they have been shown to be immune suppressive, but studies of their occurrence and function in normal tissues have been limited. With a transgenic mouse line permitting the bioluminescent imaging of FAP(+) cells, we find that they reside in most tissues of the adult mouse. FAP(+) cells from three sites, skeletal muscle, adipose tissue, and pancreas, have highly similar transcriptomes, suggesting a shared lineage. FAP(+) cells of skeletal muscle are the major local source of follistatin, and in bone marrow they express Cxcl12 and KitL. Experimental ablation of these cells causes loss of muscle mass and a reduction of B-lymphopoiesis and erythropoiesis, revealing their essential functions in maintaining normal muscle mass and hematopoiesis, respectively. Remarkably, these cells are altered at these sites in transplantable and spontaneous mouse models of cancer-induced cachexia and anemia. Thus, the FAP(+) stromal cell may have roles in two adverse consequences of cancer: their acquisition by tumors may cause failure of immunosurveillance, and their alteration in normal tissues contributes to the paraneoplastic syndromes of cachexia and anemia.


Asunto(s)
Anemia/metabolismo , Médula Ósea/metabolismo , Caquexia/metabolismo , Gelatinasas/genética , Gelatinasas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Músculo Esquelético/metabolismo , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Células del Estroma/metabolismo , Tejido Adiposo/metabolismo , Anemia/genética , Anemia/patología , Animales , Caquexia/genética , Caquexia/patología , Linaje de la Célula/genética , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Endopeptidasas , Eritropoyesis/genética , Folistatina/genética , Folistatina/metabolismo , Hematopoyesis/genética , Linfopoyesis/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos/genética , Ratones Transgénicos/metabolismo , Músculo Esquelético/citología , Trastornos Musculares Atróficos/genética , Trastornos Musculares Atróficos/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Páncreas/metabolismo , Células del Estroma/citología , Transcriptoma/genética
11.
Proc Natl Acad Sci U S A ; 108(37): 15306-11, 2011 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-21876173

RESUMEN

Although the simultaneous engagement of multiple effector mechanisms is thought to characterize optimal CD8(+) T-cell immunity and facilitate pathogen clearance, the differentiation pathways leading to the acquisition and maintenance of such polyfunctional activity are not well understood. Division-dependent profiles of effector molecule expression for virus-specific T cells are analyzed here by using a combination of carboxyfluorescein succinimidyl ester dilution and intracellular cytokine staining subsequent to T-cell receptor ligation. The experiments show that, although the majority of naive CD8(+) T-cell precursors are preprogrammed to produce TNF-α soon after stimulation and a proportion make both TNF-α and IL-2, the progressive acquisition of IFN-γ expression depends on continued lymphocyte proliferation. Furthermore, the extensive division characteristic of differentiation to peak effector activity is associated with the progressive dominance of IFN-γ and the concomitant loss of polyfunctional cytokine production, although this is not apparent for long-term CD8(+) T-cell memory. Such proliferation-dependent variation in cytokine production appears tied to the epigenetic signatures within the ifnG and tnfA proximal promoters. Specifically, those cytokine gene loci that are rapidly expressed following antigen stimulation at different stages of T-cell differentiation can be shown (by ChIP) to have permissive epigenetic and RNA polymerase II docking signatures. Thus, the dynamic changes in cytokine profiles for naive, effector, and memory T cells are underpinned by specific epigenetic landscapes that regulate responsiveness following T-cell receptor ligation.


Asunto(s)
Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Diferenciación Celular/genética , Citocinas/genética , Epigénesis Genética , Animales , Linfocitos T CD8-positivos/virología , División Celular , Proliferación Celular , Citocinas/metabolismo , Histonas/metabolismo , Memoria Inmunológica/genética , Interferón gamma/genética , Interferón gamma/metabolismo , Activación de Linfocitos/inmunología , Ratones , Fenotipo , Procesamiento Proteico-Postraduccional , ARN Polimerasa II/metabolismo , Especificidad de la Especie , Linfocitos T Citotóxicos/citología , Linfocitos T Citotóxicos/inmunología , Sitio de Iniciación de la Transcripción , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA