Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33805070

RESUMEN

Lipedema is an adipose tissue disorder characterized by the disproportionate increase of subcutaneous fat tissue in the lower and/or upper extremities. The underlying pathomechanism remains unclear and no molecular biomarkers to distinguish the disease exist, leading to a large number of undiagnosed and misdiagnosed patients. To unravel the distinct molecular characteristic of lipedema we performed lipidomic analysis of the adipose tissue and serum of lipedema versus anatomically- and body mass index (BMI)-matched control patients. Both tissue groups showed no significant changes regarding lipid composition. As hyperplastic adipose tissue represents low-grade inflammation, the potential systemic effects on circulating cytokines were evaluated in lipedema and control patients using the Multiplex immunoassay system. Interestingly, increased systemic levels of interleukin 11 (p = 0.03), interleukin 28A (p = 0.04) and interleukin 29 (p = 0.04) were observed. As cytokines can influence metabolic activity, the metabolic phenotype of the stromal vascular fraction was examined, revealing significantly increased mitochondrial respiration in lipedema. In conclusion, despite sharing a comparable lipid profile with healthy adipose tissue, lipedema is characterized by a distinct systemic cytokine profile and metabolic activity of the stromal vascular fraction.


Asunto(s)
Tejido Adiposo/metabolismo , Citocinas/metabolismo , Lipedema/metabolismo , Lípidos/química , Células del Estroma/metabolismo , Adulto , Biomarcadores/metabolismo , Biopsia , Índice de Masa Corporal , Femenino , Humanos , Inmunoensayo , Inflamación , Metabolismo de los Lípidos , Lipidómica , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Mitocondrias/metabolismo , Consumo de Oxígeno , Fenotipo
2.
Pharmacol Res Perspect ; 6(2): e00392, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29610666

RESUMEN

Activation of the innate immune system by free heme has been proposed as one of the principal consequences of cell-free hemoglobin (Hb) exposure. Nonetheless, in the absence of infection, heme exposures within a hematoma, during hemolysis, or upon systemic administration of Hb (eg, as a Hb-based oxygen carrier) are typically not accompanied by uncontrolled inflammation, challenging the assumption that heme is a major proinflammatory mediator in vivo. Because of its hydrophobic nature, heme liberated from oxidized hemoglobin is rapidly transferred to alternative protein-binding sites (eg, albumin) or to hydrophobic lipid compartments minimizing protein-free heme under in vivo equilibrium conditions. We demonstrate that the capacity of heme to activate human neutrophil granulocytes strictly depends on the availability of non protein-associated heme. In human endothelial cells as well as in mouse macrophage cell cultures and in mouse models of local and systemic heme exposure, protein-associated heme or Hb do not induce inflammatory gene expression over a broad range of exposure conditions. Only experiments in protein-free culture medium demonstrated a weak capacity of heme-solutions to induce toll-like receptor-(TLR4) dependent TNF-alpha expression in macrophages. Our data suggests that the equilibrium-state of free and protein-associated heme critically determines the proinflammatory capacity of the metallo-porphyrin. Based on these data it appears unlikely that inflammation-promoting equilibrium conditions could ever occur in vivo.


Asunto(s)
Hemo/fisiología , Inflamación , Macrófagos/inmunología , Activación Neutrófila/efectos de los fármacos , Neutrófilos/inmunología , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/inmunología , Relación Dosis-Respuesta a Droga , Perfilación de la Expresión Génica , Hemo/farmacología , Hemo-Oxigenasa 1/metabolismo , Hemólisis/efectos de los fármacos , Hemólisis/inmunología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inflamación/genética , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Neutrófilos/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Transcriptoma/inmunología
3.
BMC Biotechnol ; 18(1): 15, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29544494

RESUMEN

BACKGROUND: Preclinical studies have evaluated haptoglobin (Hp) polymers from pooled human plasma as a therapeutic protein to attenuate toxic effects of cell-free hemoglobin (Hb). Proof of concept studies have demonstrated efficacy of Hp in hemolysis associated with transfusion and sickle cell anemia. However, phenotype-specific Hp products might be desirable to exploit phenotype specific activities of Hp 1-1 versus Hp 2-2, offering opportunities for recombinant therapeutics. Prohaptoglobin (proHp) is the primary translation product of the Hp mRNA. ProHp is proteolytically cleaved by complement C1r subcomponent-like protein (C1r-LP) in the endoplasmic reticulum. Two main allelic Hp variants, HP1 and HP2 exist. The larger HP2 is considered to be the ancestor variant of all human Hp alleles and is characterized by an α2-chain, which contains an extra cysteine residue that pairs with additional α-chains generating multimers with molecular weights of 200-900 kDa. The two human HP1 alleles (HP1F and HP1S) differ by a two-amino-acid substitution polymorphism within the α-chain and are derived from HP2 by recurring exon deletions. RESULTS: In the present study, we describe a process for the production of recombinant phenotype specific Hp polymers in mammalian FS293F cells. This approach demonstrates that efficient expression of mature and fully functional protein products requires co-expression of active C1r-LP. The functional characterization of our proteins, which included monomer/polymer distribution, binding affinities as well as NO-sparing and antioxidant functions, demonstrated that C1r-LP-processed recombinant Hp demonstrates equal protective functions as plasma derived Hp in vitro as well as in animal studies. CONCLUSIONS: We present a recombinant production process for fully functional phenotype-specific Hp therapeutics. The proposed process could accelerate the development of Hb scavengers to treat patients with cell-free Hb associated disease states, such as sickle cell disease and other hemolytic conditions.


Asunto(s)
Haptoglobinas/genética , Haptoglobinas/metabolismo , Hemoglobinas/metabolismo , Ingeniería de Proteínas/métodos , Serina Endopeptidasas/genética , Animales , Vasos Coronarios/efectos de los fármacos , Cobayas , Haptoglobinas/farmacología , Hemo/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Peroxidación de Lípido/efectos de los fármacos , Masculino , Óxido Nítrico/metabolismo , Fenotipo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Serina Endopeptidasas/metabolismo , Porcinos
4.
Free Radic Biol Med ; 85: 259-68, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25933590

RESUMEN

Extracellular or free hemoglobin (Hb) accumulates during hemolysis, tissue damage, and inflammation. Heme-triggered oxidative reactions can lead to diverse structural modifications of lipids and proteins, which contribute to the propagation of tissue damage. One important target of Hb׳s peroxidase reactivity is its own globin structure. Amino acid oxidation and crosslinking events destabilize the protein and ultimately cause accumulation of proinflammatory and cytotoxic Hb degradation products. The Hb scavenger haptoglobin (Hp) attenuates oxidation-induced Hb degradation. In this study we show that in the presence of hydrogen peroxide (H2O2), Hb and the Hb:Hp complex share comparable peroxidative reactivity and free radical generation. While oxidation of both free Hb and Hb:Hp complex generates a common tyrosine-based free radical, the spin-trapping reaction with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) yields dissimilar paramagnetic products in Hb and Hb:Hp, suggesting that radicals are differently redistributed within the complex before reacting with the spin trap. With LC-MS(2) mass spectrometry we assigned multiple known and novel DMPO adduct sites. Quantification of these adducts suggested that the Hb:Hp complex formation causes extensive delocalization of accessible free radicals with drastic reduction of the major tryptophan and cysteine modifications in the ß-globin chain of the Hb:Hp complex, including decreased ßCys93 DMPO adduction. In contrast, the quantitative changes in DMPO adduct formation on Hb:Hp complex formation were less pronounced in the Hb α-globin chain. In contrast to earlier speculations, we found no evidence that free Hb radicals are delocalized to the Hp chain of the complex. The observation that Hb:Hp complex formation alters free radical distribution in Hb may help to better understand the structural basis for Hp as an antioxidant protein.


Asunto(s)
Radicales Libres/metabolismo , Haptoglobinas/metabolismo , Hemoglobinas/metabolismo , Detección de Spin , Espectrometría de Masas en Tándem/métodos , Secuencia de Aminoácidos , Aminoácidos/química , Cromatografía Liquida , Espectroscopía de Resonancia por Spin del Electrón , Haptoglobinas/química , Hemoglobinas/química , Humanos , Peróxido de Hidrógeno/farmacología , Datos de Secuencia Molecular , Oxidación-Reducción , Peroxidasas/metabolismo
5.
Transfusion ; 55(8): 1872-81, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25752902

RESUMEN

BACKGROUND: Prolonged storage of red blood cells (RBCs) leads to storage lesions, which may impair clinical outcomes after transfusion. A hallmark of storage lesions is progressive echinocytic shape transformation, which can be partially reversed by washing in albumin solutions. Here we have investigated the impact of this shape recovery on biorheologic variables. STUDY DESIGN AND METHODS: RBCs stored hypothermically for 6 to 7 weeks were washed in a 1% human serum albumin (HSA) solution. RBC deformability was measured with osmotic gradient ektacytometry. The viscosity of RBC suspensions was measured with a Couette-type viscometer. The flow behavior of RBCs suspended at 40% hematocrit was tested with an artificial microvascular network (AMVN). RESULTS: Washing in 1% albumin reduced higher degrees of echinocytes and increased the frequency of discocytes, thereby shifting the morphologic index toward discocytosis. Washing also reduced RBC swelling. This shape recovery was not seen after washing in saline, buffer, or plasma. RBC shape normalization did not improve cell deformability measured by ektacytometry, but it tended to decrease suspension viscosities at low shear rates and improved the perfusion of an AMVN. CONCLUSIONS: Washing of stored RBCs in a 1% HSA solution specifically reduces echinocytosis, and this shape recovery has a beneficial effect on microvascular perfusion in vitro. Washing in 1% albumin may represent a new approach to improving the quality of stored RBCs and thus potentially reducing the likelihood of adverse clinical outcomes associated with transfusion of blood stored for longer periods of time.


Asunto(s)
Conservación de la Sangre/métodos , Transfusión de Eritrocitos , Eritrocitos/efectos de los fármacos , Albúmina Sérica/farmacología , Adenina/farmacología , Adenosina Trifosfato/sangre , Tampones (Química) , Forma de la Célula , Índices de Eritrocitos , Eritrocitos/citología , Eritrocitos Anormales/ultraestructura , Glucosa/farmacología , Glutatión/sangre , Guanosina/farmacología , Hemorreología , Humanos , Técnicas In Vitro , Manitol/farmacología , Modelos Anatómicos , Oxidación-Reducción , Perfusión , Plasma , Refrigeración , Cloruro de Sodio/farmacología , Soluciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA