Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nat Commun ; 14(1): 1975, 2023 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-37031202

RESUMEN

Persistent HPV16 infection is a major cause of the global cancer burden. The viral life cycle is dependent on the differentiation program of stratified squamous epithelium, but the landscape of keratinocyte subpopulations which support distinct phases of the viral life cycle has yet to be elucidated. Here, single cell RNA sequencing of HPV16 infected compared to uninfected organoids identifies twelve distinct keratinocyte populations, with a subset mapped to reconstruct their respective 3D geography in stratified squamous epithelium. Instead of conventional terminally differentiated cells, an HPV-reprogrammed keratinocyte subpopulation (HIDDEN cells) forms the surface compartment and requires overexpression of the ELF3/ESE-1 transcription factor. HIDDEN cells are detected throughout stages of human carcinogenesis including primary human cervical intraepithelial neoplasias and HPV positive head and neck cancers, and a possible role in promoting viral carcinogenesis is supported by TCGA analyses. Single cell transcriptome information on HPV-infected versus uninfected epithelium will enable broader studies of the role of individual keratinocyte subpopulations in tumor virus infection and cancer evolution.


Asunto(s)
Carcinoma de Células Escamosas , Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Femenino , Humanos , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Transcriptoma , Epitelio/metabolismo , Queratinocitos/metabolismo , Carcinogénesis/genética , Carcinoma de Células Escamosas/genética , Proteínas Oncogénicas Virales/genética
2.
Neuro Oncol ; 24(12): 2190-2199, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-35552452

RESUMEN

BACKGROUND: Children ≤36 months with diffuse intrinsic pontine glioma (DIPG) have increased long-term survival (LTS, overall survival (OS) ≥24 months). Understanding distinguishing characteristics in this population is critical to improving outcomes. METHODS: Patients ≤36 months at diagnosis enrolled on the International DIPG Registry (IDIPGR) with central imaging confirmation were included. Presentation, clinical course, imaging, pathology and molecular findings were analyzed. RESULTS: Among 1183 patients in IDIPGR, 40 were eligible (median age: 29 months). Median OS was 15 months. Twelve patients (30%) were LTS, 3 (7.5%) very long-term survivors ≥5 years. Among 8 untreated patients, median OS was 2 months. Patients enrolled in the registry but excluded from our study by central radiology review or tissue diagnosis had median OS of 7 months. All but 1 LTS received radiation. Among 32 treated patients, 1-, 2-, 3-, and 5-year OS rates were 68.8%, 31.2%, 15.6% and 12.5%, respectively. LTS had longer duration of presenting symptoms (P = .018). No imaging features were predictive of outcome. Tissue and genomic data were available in 18 (45%) and 10 patients, respectively. Among 9 with known H3K27M status, 6 had a mutation. CONCLUSIONS: Children ≤36 months demonstrated significantly more LTS, with an improved median OS of 15 months; 92% of LTS received radiation. Median OS in untreated children was 2 months, compared to 17 months for treated children. LTS had longer duration of symptoms. Excluded patients demonstrated a lower OS, contradicting the hypothesis that children ≤36 months with DIPG show improved outcomes due to misdiagnosis.


Asunto(s)
Astrocitoma , Neoplasias del Tronco Encefálico , Glioma , Preescolar , Humanos , Neoplasias del Tronco Encefálico/diagnóstico , Neoplasias del Tronco Encefálico/genética , Neoplasias del Tronco Encefálico/terapia , Glioma/genética , Glioma/terapia , Glioma/patología , Sistema de Registros
3.
Neuro Oncol ; 24(1): 141-152, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34114629

RESUMEN

BACKGROUND: Diffuse intrinsic pontine gliomas (DIPG) generally occur in young school-age children, although can occur in adolescents and young adults. The purpose of this study was to describe clinical, radiological, pathologic, and molecular characteristics in patients ≥10 years of age with DIPG enrolled in the International DIPG Registry (IDIPGR). METHODS: Patients ≥10 years of age at diagnosis enrolled in the IDIPGR with imaging confirmed DIPG diagnosis were included. The primary outcome was overall survival (OS) categorized as long-term survivors (LTS) (≥24 months) or short-term survivors (STS) (<24 months). RESULTS: Among 1010 patients, 208 (21%) were ≥10 years of age at diagnosis; 152 were eligible with a median age of 12 years (range 10-26.8). Median OS was 13 (2-82) months. The 1-, 3-, and 5-year OS was 59.2%, 5.3%, and 3.3%, respectively. The 18/152 (11.8%) LTS were more likely to be older (P < .01) and present with longer symptom duration (P < .01). Biopsy and/or autopsy were performed in 50 (33%) patients; 77%, 61%, 33%, and 6% of patients tested had H3K27M (H3F3A or HIST1H3B), TP53, ATRX, and ACVR1 mutations/genome alterations, respectively. Two of 18 patients with IDH1 testing were IDH1-mutant and 1 was a LTS. The presence or absence of H3 alterations did not affect survival. CONCLUSION: Patients ≥10 years old with DIPG have a median survival of 13 months. LTS present with longer symptom duration and are likely to be older at presentation compared to STS. ATRX mutation rates were higher in this population than the general DIPG population.


Asunto(s)
Astrocitoma , Neoplasias del Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Glioma , Adolescente , Adulto , Neoplasias del Tronco Encefálico/genética , Niño , Glioma/genética , Humanos , Sistema de Registros , Adulto Joven
4.
Acta Neuropathol Commun ; 9(1): 14, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33431066

RESUMEN

An adequate understanding of the relationships between radiographic and genomic features in diffuse intrinsic pontine glioma (DIPG) is essential, especially in the absence of universal biopsy, to further characterize the molecular heterogeneity of this disease and determine which patients are most likely to respond to biologically-driven therapies. Here, a radiogenomics analytic approach was applied to a cohort of 28 patients with DIPG. Tumor size and imaging characteristics from all available serial MRIs were evaluated by a neuro-radiologist, and patients were divided into three radiographic response groups (partial response [PR], stable disease [SD], progressive disease [PD]) based on MRI within 2 months of radiotherapy (RT) completion. Whole genome and RNA sequencing were performed on autopsy tumor specimens. We report several key, therapeutically-relevant findings: (1) Certain radiologic features on first and subsequent post-RT MRIs are associated with worse overall survival, including PD following irradiation as well as present, new, and/or increasing peripheral ring enhancement, necrosis, and diffusion restriction. (2) Upregulation of EMT-related genes and distant tumor spread at autopsy are observed in a subset of DIPG patients who exhibit poorer radiographic response to irradiation and/or higher likelihood of harboring H3F3A mutations, suggesting possible benefit of upfront craniospinal irradiation. (3) Additional genetic aberrations were identified, including DYNC1LI1 mutations in a subgroup of patients with PR on post-RT MRI; further investigation into potential roles in DIPG tumorigenesis and/or treatment sensitivity is necessary. (4) Whereas most DIPG tumors have an immunologically "cold" microenvironment, there appears to be a subset which harbor a more inflammatory genomic profile and/or higher mutational burden, with a trend toward improved overall survival and more favorable radiographic response to irradiation, in whom immunotherapy should be considered. This study has begun elucidating relationships between post-RT radiographic response with DIPG molecular profiles, revealing radiogenomically distinct subgroups with unique clinical trajectories and therapeutic targets.


Asunto(s)
Neoplasias del Tronco Encefálico/diagnóstico por imagen , Neoplasias del Tronco Encefálico/genética , Glioma Pontino Intrínseco Difuso/diagnóstico por imagen , Glioma Pontino Intrínseco Difuso/genética , Genómica de Imágenes , Adolescente , Antineoplásicos/uso terapéutico , Neoplasias del Tronco Encefálico/patología , Neoplasias del Tronco Encefálico/radioterapia , Quimioterapia Adyuvante , Niño , Preescolar , Dineínas Citoplasmáticas/genética , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Glioma Pontino Intrínseco Difuso/patología , Glioma Pontino Intrínseco Difuso/radioterapia , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal/genética , Receptores ErbB/genética , Femenino , Histonas/genética , Humanos , Imagen por Resonancia Magnética , Masculino , Proyectos Piloto , Terapia de Protones , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Radioterapia , Análisis de Secuencia de ARN , Tasa de Supervivencia , Microambiente Tumoral/genética , Proteínas Supresoras de Tumor/genética , Secuenciación Completa del Genoma , Adulto Joven
5.
J Crohns Colitis ; 2020 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-32770196

RESUMEN

BACKGROUND AND AIMS: Ileal strictures are the major indication for resective surgery in Crohn's disease (CD). We aimed to define ileal gene programs present at diagnosis linked with future stricturing behavior during five year follow-up, and to identify potential small molecules to reverse these gene signatures. METHODS: Antimicrobial serologies and pre-treatment ileal gene expression were assessed in a representative subset of 249 CD patients within the RISK multicenter pediatric CD inception cohort study, including 113 that are unique to this report. These data were used to define genes associated with stricturing behavior and for model testing to predict stricturing behavior. A bioinformatics approach to define small molecules which may reverse the stricturing gene signature was applied. RESULTS: 19 of the 249 patients developed isolated B2 stricturing behavior during follow-up, while 218 remained B1 inflammatory. Using deeper RNA sequencing than in our prior report, we have now defined an inflammatory gene signature including an oncostatin M co-expression signature, tightly associated with extra-cellular matrix (ECM) gene expression in those who developed stricturing complications. We further computationally prioritize small molecules targeting macrophage and fibroblast activation and angiogenesis which may reverse the stricturing gene signature. A model containing ASCA and CBir1 serologies and a refined eight ECM gene set was significantly associated with stricturing development by year five after diagnosis (AUC (95th CI) = 0.82 (0.7-0.94)). CONCLUSION: An ileal gene program for macrophage and fibroblast activation is linked to stricturing complications in treatment naïve pediatric CD, and may inform novel small molecule therapeutic approaches.

7.
Acta Neuropathol ; 139(1): 157-174, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31664505

RESUMEN

In Neurofibromatosis type 1, NF1 gene mutations in Schwann cells (SC) drive benign plexiform neurofibroma (PNF), and no additional SC changes explain patient-to-patient variability in tumor number. Evidence from twin studies suggests that variable expressivity might be caused by unidentified modifier genes. Whole exome sequencing of SC and fibroblast DNA from the same resected PNFs confirmed biallelic SC NF1 mutations; non-NF1 somatic SC variants were variable and present at low read number. We identified frequent germline variants as possible neurofibroma modifier genes. Genes harboring variants were validated in two additional cohorts of NF1 patients and by variant burden test. Genes including CUBN, CELSR2, COL14A1, ATR and ATM also showed decreased gene expression in some neurofibromas. ATM-relevant DNA repair defects were also present in a subset of neurofibromas with ATM variants, and in some neurofibroma SC. Heterozygous ATM G2023R or homozygous S707P variants reduced ATM protein expression in heterologous cells. In mice, genetic Atm heterozygosity promoted Schwann cell precursor self-renewal and increased tumor formation in vivo, suggesting that ATM variants contribute to neurofibroma initiation. We identify germline variants, rare in the general population, overrepresented in NF1 patients with neurofibromas. ATM and other identified genes are candidate modifiers of PNF pathogenesis.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Genes de Neurofibromatosis 1 , Neurofibroma Plexiforme/genética , Neurofibromatosis 1/genética , Animales , Fibroblastos/patología , Humanos , Ratones , Mutación Missense , Neurofibroma Plexiforme/patología , Neurofibromatosis 1/patología , Células de Schwann/patología , Secuenciación del Exoma
8.
Nucleic Acids Res ; 47(21): e138, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31529053

RESUMEN

To understand the molecular pathogenesis of human disease, precision analyses to define alterations within and between disease-associated cell populations are desperately needed. Single-cell genomics represents an ideal platform to enable the identification and comparison of normal and diseased transcriptional cell populations. We created cellHarmony, an integrated solution for the unsupervised analysis, classification, and comparison of cell types from diverse single-cell RNA-Seq datasets. cellHarmony efficiently and accurately matches single-cell transcriptomes using a community-clustering and alignment strategy to compute differences in cell-type specific gene expression over potentially dozens of cell populations. Such transcriptional differences are used to automatically identify distinct and shared gene programs among cell-types and identify impacted pathways and transcriptional regulatory networks to understand the impact of perturbations at a systems level. cellHarmony is implemented as a python package and as an integrated workflow within the software AltAnalyze. We demonstrate that cellHarmony has improved or equivalent performance to alternative label projection methods, is able to identify the likely cellular origins of malignant states, stratify patients into clinical disease subtypes from identified gene programs, resolve discrete disease networks impacting specific cell-types, and illuminate therapeutic mechanisms. Thus, this approach holds tremendous promise in revealing the molecular and cellular origins of complex disease.


Asunto(s)
Algoritmos , Perfilación de la Expresión Génica/métodos , Genómica/métodos , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Transcriptoma/genética , Bases de Datos Genéticas , Conjuntos de Datos como Asunto , Humanos
9.
Nat Commun ; 10(1): 38, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30604764

RESUMEN

Molecular mechanisms driving disease course and response to therapy in ulcerative colitis (UC) are not well understood. Here, we use RNAseq to define pre-treatment rectal gene expression, and fecal microbiota profiles, in 206 pediatric UC patients receiving standardised therapy. We validate our key findings in adult and paediatric UC cohorts of 408 participants. We observe a marked suppression of mitochondrial genes and function across cohorts in active UC, and that increasing disease severity is notable for enrichment of adenoma/adenocarcinoma and innate immune genes. A subset of severity genes improves prediction of corticosteroid-induced remission in the discovery cohort; this gene signature is also associated with response to anti-TNFα and anti-α4ß7 integrin in adults. The severity and therapeutic response gene signatures were in turn associated with shifts in microbes previously implicated in mucosal homeostasis. Our data provide insights into UC pathogenesis, and may prioritise future therapies for nonresponders to current approaches.


Asunto(s)
Colitis Ulcerosa/genética , Genes Mitocondriales/genética , Mucosa Intestinal/metabolismo , Enfermedades Mitocondriales/genética , Transcriptoma/genética , Adolescente , Adulto , Antiinflamatorios no Esteroideos/uso terapéutico , Niño , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/patología , Heces/microbiología , Femenino , Perfilación de la Expresión Génica , Glucocorticoides/uso terapéutico , Humanos , Integrinas/antagonistas & inhibidores , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Masculino , Mesalamina/uso terapéutico , Microbiota , Mitocondrias/genética , Mitocondrias/patología , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/microbiología , Enfermedades Mitocondriales/patología , Medicina de Precisión/métodos , Estudios Prospectivos , Recto/metabolismo , Recto/microbiología , Recto/patología , Inducción de Remisión/métodos , Análisis de Secuencia de ARN , Índice de Severidad de la Enfermedad , Resultado del Tratamiento , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
10.
Mucosal Immunol ; 12(2): 491-502, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30542108

RESUMEN

Age-of-diagnosis associated variation in disease location and antimicrobial sero-reactivity has suggested fundamental differences in pediatric Crohn Disease (CD) pathogenesis. This variation may be related to pubertal peak incidence of ileal involvement and Peyer's patches maturation, represented by IFNγ-expressing Th1 cells. However, direct mucosal evidence is lacking. We characterize the global pattern of ileal gene expression and microbial communities in 525 treatment-naive pediatric CD patients and controls (Ctl), stratifying samples by their age-of-diagnosis. We show a robust ileal gene signature notable for higher expression of specific immune genes including GM-CSF and INFγ, and reduced expression of antimicrobial Paneth cell α-defensins, in older compared to younger patients. Reduced α-defensin expression in older patients was associated with higher IFNγ expression. By comparison, the CD-associated ileal dysbiosis, characterized by expansion of Enterobacteriaceae and contraction of Lachnospiraceae and Ruminococcaceae, was already established within the younger group and did not vary systematically with increasing age-of-diagnosis. Multivariate analysis considering individual taxa, however did demonstrate negative associations between Lachnospiraceae and IFNγ, and positive associations between Bacteroides and α-defensin expression. These data provide evidence for maturation of mucosal Th1 immune responses and loss of epithelial antimicrobial α-defensins which are associated with specific taxa with increasing age-of-diagnosis in pediatric CD.


Asunto(s)
Factores de Edad , Envejecimiento/fisiología , Enfermedad de Crohn/inmunología , Disbiosis/inmunología , Íleon/inmunología , Ganglios Linfáticos Agregados/inmunología , alfa-Defensinas/metabolismo , Adolescente , Niño , Preescolar , Estudios de Cohortes , Enfermedad de Crohn/epidemiología , Disbiosis/epidemiología , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Pubertad , Riesgo , Células TH1/inmunología , alfa-Defensinas/genética
11.
JCI Insight ; 3(8)2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29669943

RESUMEN

Eosinophilic esophagitis (EoE) is an allergic inflammatory esophageal disorder with a complex underlying genetic etiology often associated with other comorbidities. Using whole-exome sequencing (WES) of 63 patients with EoE and 60 unaffected family members and family-based trio analysis, we sought to uncover rare coding variants. WES analysis identified 5 rare, damaging variants in dehydrogenase E1 and transketolase domain-containing 1 (DHTKD1). Rare variant burden analysis revealed an overabundance of putative, potentially damaging DHTKD1 mutations in EoE (P = 0.01). Interestingly, we also identified 7 variants in the DHTKD1 homolog oxoglutarate dehydrogenase-like (OGDHL). Using shRNA-transduced esophageal epithelial cells and/or patient fibroblasts, we further showed that disruption of normal DHTKD1 or OGDHL expression blunts mitochondrial function. Finally, we demonstrated that the loss of DHTKD1 expression increased ROS production and induced the expression of viperin, a gene previously shown to be involved in production of Th2 cytokines in T cells. Viperin had increased expression in esophageal biopsies of EoE patients compared with control individuals and was upregulated by IL-13 in esophageal epithelial cells. These data identify a series of rare genetic variants implicating DHTKD1 and OGDHL in the genetic etiology of EoE and underscore a potential pathogenic role for mitochondrial dysfunction in EoE.


Asunto(s)
Esofagitis Eosinofílica/congénito , Esofagitis Eosinofílica/inmunología , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Mitocondrias/metabolismo , Oxidorreductasas/genética , Adulto , Niño , Citocinas/metabolismo , Esofagitis Eosinofílica/etiología , Esofagitis Eosinofílica/patología , Células Epiteliales/metabolismo , Femenino , Fibroblastos/metabolismo , Humanos , Interleucina-13/metabolismo , Cetona Oxidorreductasas , Masculino , Mitocondrias/fisiología , Mutación , Oxidorreductasas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Proteínas , ARN Interferente Pequeño/genética , Linfocitos T/metabolismo , Regulación hacia Arriba/genética , Secuenciación del Exoma/métodos
12.
Inflamm Bowel Dis ; 24(2): 346-360, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29361088

RESUMEN

Background: Long noncoding RNAs (lncRNA) are key regulators of gene transcription and many show tissue-specific expression. We previously defined a novel inflammatory and metabolic ileal gene signature in treatment-naive pediatric Crohn disease (CD). We now extend our analyses to include potential regulatory lncRNA. Methods: Using RNAseq, we systematically profiled lncRNAs and protein-coding gene expression in 177 ileal biopsies. Co-expression analysis was used to identify functions and tissue-specific expression. RNA in situ hybridization was used to validate expression. Real-time polymerase chain reaction was used to test lncRNA regulation by IL-1ß in Caco-2 enterocytes. Results: We characterize widespread dysregulation of 459 lncRNAs in the ileum of CD patients. Using only the lncRNA in discovery and independent validation cohorts showed patient classification as accurate as the protein-coding genes, linking lncRNA to CD pathogenesis. Co-expression and functional annotation enrichment analyses across several tissues and cell types 1showed that the upregulated LINC01272 is associated with a myeloid pro-inflammatory signature, whereas the downregulated HNF4A-AS1 exhibits association with an epithelial metabolic signature. We confirmed tissue-specific expression in biopsies using in situ hybridization, and validated regulation of prioritized lncRNA upon IL-1ß exposure in differentiated Caco-2 cells. Finally, we identified significant correlations between LINC01272 and HNF4A-AS1 expression and more severe mucosal injury. Conclusions: We systematically define differentially expressed lncRNA in the ileum of newly diagnosed pediatric CD. We show lncRNA utility to correctly classify disease or healthy states and demonstrate their regulation in response to an inflammatory signal. These lncRNAs, after mechanistic exploration, may serve as potential new tissue-specific targets for RNA-based interventions.


Asunto(s)
Enfermedad de Crohn/genética , Factor Nuclear 4 del Hepatocito/genética , ARN Largo no Codificante/genética , Adolescente , Células CACO-2 , Niño , Regulación hacia Abajo , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Íleon/metabolismo , Íleon/patología , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , Regulación hacia Arriba
13.
J Virol ; 92(1)2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29046446

RESUMEN

Strong viral enhancers in gammaretrovirus vectors have caused cellular proto-oncogene activation and leukemia, necessitating the use of cellular promoters in "enhancerless" self-inactivating integrating vectors. However, cellular promoters result in relatively low transgene expression, often leading to inadequate disease phenotype correction. Vectors derived from foamy virus, a nonpathogenic retrovirus, show higher preference for nongenic integrations than gammaretroviruses/lentiviruses and preferential integration near transcriptional start sites, like gammaretroviruses. We found that strong viral enhancers/promoters placed in foamy viral vectors caused extremely low immortalization of primary mouse hematopoietic stem/progenitor cells compared to analogous gammaretrovirus/lentivirus vectors carrying the same enhancers/promoters, an effect not explained solely by foamy virus' modest insertional site preference for nongenic regions compared to gammaretrovirus/lentivirus vectors. Using CRISPR/Cas9-mediated targeted insertion of analogous proviral sequences into the LMO2 gene and then measuring LMO2 expression, we demonstrate a sequence-specific effect of foamy virus, independent of insertional bias, contributing to reduced genotoxicity. We show that this effect is mediated by a 36-bp insulator located in the foamy virus long terminal repeat (LTR) that has high-affinity binding to the CCCTC-binding factor. Using our LMO2 activation assay, LMO2 expression was significantly increased when this insulator was removed from foamy virus and significantly reduced when the insulator was inserted into the lentiviral LTR. Our results elucidate a mechanism underlying the low genotoxicity of foamy virus, identify a novel insulator, and support the use of foamy virus as a vector for gene therapy, especially when strong enhancers/promoters are required.IMPORTANCE Understanding the genotoxic potential of viral vectors is important in designing safe and efficacious vectors for gene therapy. Self-inactivating vectors devoid of viral long-terminal-repeat enhancers have proven safe; however, transgene expression from cellular promoters is often insufficient for full phenotypic correction. Foamy virus is an attractive vector for gene therapy. We found foamy virus vectors to be remarkably less genotoxic, well below what was expected from their integration site preferences. We demonstrate that the foamy virus long terminal repeats contain an insulator element that binds CCCTC-binding factor and reduces its insertional genotoxicity. Our study elucidates a mechanism behind the low genotoxic potential of foamy virus, identifies a unique insulator, and supports the use of foamy virus as a vector for gene therapy.


Asunto(s)
Vectores Genéticos , Elementos Aisladores , Spumavirus/genética , Secuencias Repetidas Terminales , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Sistemas CRISPR-Cas/genética , Células Cultivadas , Terapia Genética/métodos , Células Madre Hematopoyéticas/virología , Proteínas con Dominio LIM/genética , Ratones , Mutagénesis Insercional , Pruebas de Mutagenicidad , Proto-Oncogenes Mas , Transducción Genética , Transgenes
15.
Stem Cell Reports ; 7(1): 110-25, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27293150

RESUMEN

The rigorous characterization of distinct induced pluripotent stem cells (iPSC) derived from multiple reprogramming technologies, somatic sources, and donors is required to understand potential sources of variability and downstream potential. To achieve this goal, the Progenitor Cell Biology Consortium performed comprehensive experimental and genomic analyses of 58 iPSC from ten laboratories generated using a variety of reprogramming genes, vectors, and cells. Associated global molecular characterization studies identified functionally informative correlations in gene expression, DNA methylation, and/or copy-number variation among key developmental and oncogenic regulators as a result of donor, sex, line stability, reprogramming technology, and cell of origin. Furthermore, X-chromosome inactivation in PSC produced highly correlated differences in teratoma-lineage staining and regulator expression upon differentiation. All experimental results, and raw, processed, and metadata from these analyses, including powerful tools, are interactively accessible from a new online portal at https://www.synapse.org to serve as a reusable resource for the stem cell community.


Asunto(s)
Diferenciación Celular/genética , Metilación de ADN/genética , Genoma Humano , Células Madre Pluripotentes Inducidas , Reprogramación Celular , Expresión Génica/genética , Genómica , Humanos , Células Madre/metabolismo
16.
Acta Neuropathol Commun ; 4: 13, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26860432

RESUMEN

Through inadvertent oversight of the authors, the paper failed to acknowledge funding support from Genome Canada. The Acknowledgement section should include the text: "This work was supported by the Canadian Centre for Computational Genomics (C3G), part of the Genome Innovation Network (GIN), funded by Genome Canada through Genome Quebec and Ontario Genomics".

17.
Acta Neuropathol Commun ; 4: 1, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26727948

RESUMEN

INTRODUCTION: Diffuse intrinsic pontine glioma (DIPG) and midline high-grade glioma (mHGG) are lethal childhood brain tumors. Spatial genomic heterogeneity has been well-described in adult HGG but has not been comprehensively characterized in pediatric HGG. We performed whole exome sequencing on 38-matched primary, contiguous, and metastatic tumor sites from eight children with DIPG (n = 7) or mHGG (n = 1) collected using a unique MRI-guided autopsy protocol. Validation was performed using Sanger sequencing, Droplet Digital polymerase-chain reaction, immunohistochemistry, and fluorescent in-situ hybridization. RESULTS: Median age at diagnosis was 6.1 years (range: 2.9-23.3 years). Median overall survival was 13.2 months (range: 11.2-32.2 months). Contiguous tumor infiltration and distant metastases were observed in seven and six patients, respectively, including leptomeningeal dissemination in three DIPGs. Histopathological heterogeneity was evident in seven patients, including intra-pontine heterogeneity in two DIPGs, ranging from World Health Organization grade II to IV astrocytoma. We found conservation of heterozygous K27M mutations in H3F3A (n = 4) or HIST1H3B (n = 3) across all primary, contiguous, and metastatic tumor sites in all DIPGs. ACVR1 (n = 2), PIK3CA (n = 2), FGFR1 (n = 2), and MET (n = 1) were also intra-tumorally conserved. ACVR1 was co-mutated with HIST1H3B (n = 2). In contrast, PDGFRA amplification and mutation were spatially heterogeneous, as were mutations in BCOR (n = 1), ATRX (n = 2), and MYC (n = 1). TP53 aberrations (n = 3 patients) varied by type and location between primary and metastatic tumors sites but were intra-tumorally conserved. CONCLUSION: Spatial conservation of prognostically-relevant and therapeutically-targetable somatic mutations in DIPG and mHGG contrasts the significant heterogeneity of driver mutations seen in adult HGG and supports uniform implementation of diagnostic biopsy in DIPG and mHGG to classify molecular risk groups and guide therapeutic strategy.


Asunto(s)
Neoplasias del Tronco Encefálico/diagnóstico , Glioma/diagnóstico , Mutación/genética , Adolescente , Biopsia , Neoplasias del Tronco Encefálico/genética , Niño , Preescolar , Femenino , Perfilación de la Expresión Génica , Glioma/genética , Humanos , Imagen por Resonancia Magnética , Masculino , Índice de Severidad de la Enfermedad , Adulto Joven
18.
Oncotarget ; 6(41): 43395-407, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26527316

RESUMEN

The chromatin-binding DEK protein was recently reported to promote the growth of HPV+ and HPV- head and neck squamous cell carcinomas (HNSCCs). Relevant cellular and molecular mechanism(s) controlled by DEK in HNSCC remain poorly understood. While DEK is known to regulate specific transcriptional targets, global DEK-dependent gene networks in HNSCC are unknown. To identify DEK transcriptional signatures we performed RNA-Sequencing (RNA-Seq) in HNSCC cell lines that were either proficient or deficient for DEK. Bioinformatic analyses and subsequent validation revealed that IRAK1, a regulator of inflammatory signaling, and IRAK1-dependent regulatory networks were significantly repressed upon DEK knockdown in HNSCC. According to TCGA data, 14% of HNSCC specimens overexpressed IRAK1, thus supporting possible oncogenic functions. Furthermore, genetic or pharmacologic inhibition of IRAK1 in HNSCC cell lines was sufficient to attenuate downstream signaling such as ERK1/2 and to induce HNSCC cell death by apoptosis. Finally, targeting DEK and IRAK1 simultaneously enhanced cell death as compared to targeting either alone. Our findings reveal that IRAK1 promotes cell survival and is an attractive therapeutic target in HNSCC cells. Thus, we propose a model wherein IRAK1 stimulates tumor signaling and phenotypes both independently and in conjunction with DEK.


Asunto(s)
Carcinoma de Células Escamosas/patología , Proteínas Cromosómicas no Histona/metabolismo , Regulación Neoplásica de la Expresión Génica/fisiología , Neoplasias de Cabeza y Cuello/patología , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Proteínas Oncogénicas/metabolismo , Western Blotting , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Supervivencia Celular/fisiología , Proteínas Cromosómicas no Histona/genética , Citometría de Flujo , Técnicas de Silenciamiento del Gen , Redes Reguladoras de Genes , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunohistoquímica , Inmunoprecipitación , Quinasas Asociadas a Receptores de Interleucina-1/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Oncogénicas/genética , Proteínas de Unión a Poli-ADP-Ribosa , Reacción en Cadena de la Polimerasa , Carcinoma de Células Escamosas de Cabeza y Cuello
19.
Dev Cell ; 35(1): 49-62, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26460946

RESUMEN

During fetal development, nephrons of the metanephric kidney form from a mesenchymal progenitor population that differentiates en masse before or shortly after birth. We explored intrinsic and extrinsic mechanisms controlling progenitor lifespan in a transplantation assay that allowed us to compare engraftment of old and young progenitors into the same young niche. The progenitors displayed an age-dependent decrease in proliferation and concomitant increase in niche exit rates. Single-cell transcriptome profiling revealed progressive age-dependent changes, with heterogeneity increasing in older populations. Age-dependent elevation in mTor and reduction in Fgf20 could contribute to increased exit rates. Importantly, 30% of old progenitors remained in the niche for up to 1 week post engraftment, a net gain of 50% to their lifespan, but only if surrounded by young neighbors. We provide evidence in support of a model in which intrinsic age-dependent changes affect inter-progenitor interactions that drive cessation of nephrogenesis.


Asunto(s)
Comunicación Celular , Diferenciación Celular , Senescencia Celular , Riñón/citología , Nefronas/citología , Organogénesis/fisiología , Células Madre/citología , Animales , Biomarcadores/metabolismo , Proliferación Celular , Factores de Crecimiento de Fibroblastos/fisiología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Riñón/metabolismo , Ratones , Ratones Noqueados , Modelos Teóricos , Nefronas/metabolismo , Técnicas de Cultivo de Órganos , Análisis de la Célula Individual/métodos , Células Madre/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
20.
Blood ; 126(12): 1473-82, 2015 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-26228485

RESUMEN

RhoA GTPase has been shown in vitro in cell lines and in vivo in nonmammalian organisms to regulate cell division, particularly during cytokinesis and abscission, when 2 daughter cells partition through coordinated actomyosin and microtubule machineries. To investigate the role of this GTPase in the rapidly proliferating mammalian erythroid lineage, we developed a mouse model with erythroid-specific deletion of RhoA. This model was proved embryonic lethal as a result of severe anemia by embryonic day 16.5 (E16.5). The primitive red blood cells were enlarged, poikilocytic, and frequently multinucleated, but were able to sustain life despite experiencing cytokinesis failure. In contrast, definitive erythropoiesis failed and the mice died by E16.5, with profound reduction of maturing erythroblast populations within the fetal liver. RhoA was required to activate myosin-regulatory light chain and localized at the site of the midbody formation in dividing wild-type erythroblasts. Cytokinesis failure caused by RhoA deficiency resulted in p53 activation and p21-transcriptional upregulation with associated cell-cycle arrest, increased DNA damage, and cell death. Our findings demonstrate the role of RhoA as a critical regulator for efficient erythroblast proliferation and the p53 pathway as a powerful quality control mechanism in erythropoiesis.


Asunto(s)
Actomiosina/metabolismo , Citocinesis , Eritroblastos/citología , Eritropoyesis , Proteína p53 Supresora de Tumor/metabolismo , Proteína de Unión al GTP rhoA/genética , Animales , Apoptosis , Puntos de Control del Ciclo Celular , Daño del ADN , Pérdida del Embrión/genética , Pérdida del Embrión/metabolismo , Pérdida del Embrión/patología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Eritroblastos/metabolismo , Eritroblastos/patología , Femenino , Eliminación de Gen , Ratones , Ratones Endogámicos C57BL , Proteína de Unión al GTP rhoA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA