Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Intervalo de año de publicación
1.
Neuropharmacology ; 238: 109642, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37392820

RESUMEN

The involvement of the mGlu5 receptors in the pathophysiology of several forms of monogenic autism has been supported by numerous studies following the seminal observation that mGlu5 receptor-dependent long-term depression was enhanced in the hippocampus of mice modeling the fragile-X syndrome (FXS). Surprisingly, there are no studies examining the canonical signal transduction pathway activated by mGlu5 receptors (i.e. polyphosphoinositide - PI - hydrolysis) in mouse models of autism. We have developed a method for in vivo assessment of PI hydrolysis based on systemic injection of lithium chloride followed by treatment with the selective mGlu5 receptor PAM, VU0360172, and measurement of endogenous inositolmonophosphate (InsP) in brain tissue. Here, we report that mGlu5 receptor-mediated PI hydrolysis was blunted in the cerebral cortex, hippocampus, and corpus striatum of Ube3am-/p+ mice modeling Angelman syndrome (AS), and in the cerebral cortex and hippocampus of Fmr1 knockout mice modeling FXS. In vivo mGlu5 receptor-mediated stimulation of Akt on threonine 308 was also blunted in the hippocampus of FXS mice. These changes were associated with a significant increase in cortical and striatal Homer1 levels and striatal mGlu5 receptor and Gαq levels in AS mice, and with a reduction in cortical mGlu5 receptor and hippocampal Gαq levels, and an increase in cortical phospholipase-Cß and hippocampal Homer1 levels in FXS mice. This is the first evidence that the canonical transduction pathway activated by mGlu5 receptors is down-regulated in brain regions of mice modeling monogenic autism.


Asunto(s)
Síndrome de Angelman , Trastorno Autístico , Síndrome del Cromosoma X Frágil , Ratones , Animales , Fosfatos de Fosfatidilinositol/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Hidrólisis , Modelos Animales de Enfermedad , Ratones Noqueados , Síndrome del Cromosoma X Frágil/metabolismo , Proteínas Portadoras , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo
2.
Neuropharmacology ; 235: 109569, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37142158

RESUMEN

Cellular responses to metabotropic glutamate (mGlu) receptor activation are shaped by mechanisms of receptor-receptor interaction. mGlu receptor subtypes form homodimers, intra- or inter-group heterodimers, and heteromeric complexes with other G protein-coupled receptors (GPCRs). In addition, mGlu receptors may functionally interact with other receptors through the ßγ subunits released from G proteins in response to receptor activation or other mechanisms. Here, we discuss the interactions between (i) mGlu1 and GABAB receptors in cerebellar Purkinje cells; (ii) mGlu2 and 5-HT2Aserotonergic receptors in the prefrontal cortex; (iii) mGlu5 and A2A receptors or mGlu5 and D1 dopamine receptors in medium spiny projection neurons of the indirect and direct pathways of the basal ganglia motor circuit; (iv) mGlu5 and A2A receptors in relation to the pathophysiology of Alzheimer's disease; and (v) mGlu7 and A1 adenosine or α- or ß1 adrenergic receptors. In addition, we describe in detail a novel form of non-heterodimeric interaction between mGlu3 and mGlu5 receptors, which appears to be critically involved in mechanisms of activity-dependent synaptic plasticity in the prefrontal cortex and hippocampus. Finally, we highlight the potential implication of these interactions in the pathophysiology and treatment of cerebellar disorders, schizophrenia, Alzheimer's disease, Parkinson's disease, l-DOPA-induced dyskinesias, stress-related disorders, and cognitive dysfunctions. This article is part of the Special Issue on "The receptor-receptor interaction as a new target for therapy".


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Parkinson , Humanos , Levodopa , Enfermedad de Parkinson/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Ganglios Basales/metabolismo
3.
Circ Res ; 132(11): 1489-1504, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37144413

RESUMEN

BACKGROUND: Dkk3 (Dickkopf-3) is a secreted glycoprotein known for its proapoptotic and angiogenic activity. The role of Dkk3 in cardiovascular homeostasis is largely unknown. Remarkably, the Dkk3 gene maps within a chromosome segment linked to the hypertensive phenotype in spontaneously hypertensive rats (SHR). METHODS: We used Dkk3-/- mice or stroke-resistant (sr) and stroke-prone (sp) SHR to examine the role of Dkk3 in the central and peripheral regulation of blood pressure (BP). We used lentiviral expression vector to rescue Dkk3 in knockout mice or to induce Dkk3 overexpression or silencing in SHR. RESULTS: Genetic deletion of Dkk3 in mice enhanced BP and impaired endothelium-dependent acetylcholine-induced relaxation of resistance arteries. These alterations were rescued by restoring Dkk3 expression either in the periphery or in the central nervous system (CNS). Dkk3 was required for the constitutive expression of VEGF (vascular endothelium growth factor), and the action of Dkk3 on BP and endothelium-dependent vasorelaxation was mediated by VEGF-stimulated phosphatidylinositol-3-kinase pathway, leading to eNOS (endothelial NO synthase) activation both in resistance arteries and the CNS. The regulatory function of Dkk3 on BP was confirmed in SHR stroke-resistant and SHR stroke-prone in which was blunted in both resistance arteries and brainstem. In SHR stroke-resistant, lentiviral expression vector-induced Dkk3 expression in the CNS largely reduced BP, whereas Dkk3 knock-down further enhanced BP. In SHR stroke-prone challenged with a hypersodic diet, lentiviral expression vector-induced Dkk3 expression in the CNS displayed a substantial antihypertensive effect and delayed the occurrence of stroke. CONCLUSIONS: These findings demonstrate that Dkk3 acts as peripheral and central regulator of BP by promoting VEGF expression and activating a VEGF/Akt (protein kinase B)/eNOS hypotensive axis.


Asunto(s)
Hipertensión , Accidente Cerebrovascular , Animales , Ratones , Ratas , Presión Sanguínea , Endotelio Vascular/metabolismo , Hipertensión/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ratas Endogámicas SHR , Accidente Cerebrovascular/genética , Factor A de Crecimiento Endotelial Vascular , Factores de Crecimiento Endotelial Vascular , Vasodilatación
4.
Life (Basel) ; 12(3)2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35330215

RESUMEN

Using an in vivo method for the assessment of polyphosphoinositide (PI) hydrolysis, we examine whether spatial learning and memory extinction cause changes in mGlu5 metabotropic glutamate receptor signaling in the hippocampus and prefrontal cortex. We use the following five groups of mice: (i) naive mice; (ii) control mice exposed to the same environment as learner mice; (iii) leaner mice, trained for four days in a water maze; (iv) mice in which memory extinction was induced by six trials without the platform; (v) mice that spontaneously lost memory. The mGlu5 receptor-mediated PI hydrolysis was significantly reduced in the dorsal hippocampus of learner mice as compared to naive and control mice. The mGlu5 receptor signaling was also reduced in the ventral hippocampus and prefrontal cortex of learner mice, but only with respect to naive mice. Memory extinction was associated with a large up-regulation of mGlu5 receptor-mediated PI hydrolysis in the three brain regions and with increases in mGlu5 receptor and phospholipase-Cß protein levels in the ventral and dorsal hippocampus, respectively. These findings support a role for mGlu5 receptors in mechanisms underlying spatial learning and suggest that mGlu5 receptors are candidate drug targets for disorders in which cognitive functions are impaired or aversive memories are inappropriately retained.

5.
Neurobiol Stress ; 13: 100265, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33344718

RESUMEN

Early-life stress involved in the programming of stress-related illnesses can have a toxic influence on the functioning of the nigrostriatal motor system during aging. We examined the effects of perinatal stress (PRS) on the neurochemical, electrophysiological, histological, neuroimaging, and behavioral correlates of striatal motor function in adult (4 months of age) and old (21 months of age) male rats. Adult PRS offspring rats showed reduced dopamine (DA) release in the striatum associated with reductions in tyrosine hydroxylase-positive (TH+) cells and DA transporter (DAT) levels, with no loss of striatal dopaminergic terminals as assessed by positron emission tomography analysis with fluorine-18-l-dihydroxyphenylalanine. Striatal levels of DA and its metabolites were increased in PRS rats. In contrast, D2 DA receptor signaling was reduced and A2A adenosine receptor signaling was increased in the striatum of adult PRS rats. This indicated enhanced activity of the indirect pathway of the basal ganglia motor circuit. Adult PRS rats also showed poorer performance in the grip strength test and motor learning tasks. The aged PRS rats also showed a persistent reduction in striatal DA release and defective motor skills in the pasta matrix and ladder rung walking tests. In addition, the old rats showed large increases in the levels of SNAP-25 and synaptophysin, which are synaptic vesicle-related proteins in the striatum, and in the PRS group only, reductions in Syntaxin-1 and Rab3a protein levels were observed. Our findings indicated that the age-dependent threshold for motor dysfunction was lowered in PRS rats. This area of research is underdeveloped, and our study suggests that early-life stress can contribute to an increased understanding of how aging diseases are programmed in early-life.

6.
Front Pharmacol ; 9: 804, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30108503

RESUMEN

mGlu5 receptor-mediated polyphosphoinositide (PI) hydrolysis is classically measured by determining the amount of radioactivity incorporated in inositolmonophosphate (InsP) after labeling of membrane phospholipids with radioactive inositol. Although this method is historically linked to the study of mGlu receptors, it is inappropriate for the assessment of mGlu5 receptor signaling in vivo. Using a new ELISA kit we showed that systemic treatment with the selective positive allosteric modulator (PAM) of mGlu5 receptors VU0360172 enhanced InsP formation in different brain regions of CD1 or C57Black mice. The action of VU0360172 was sensitive to the mGlu5 receptor, negative allosteric modulator (NAM), MTEP, and was abolished in mice lacking mGlu5 receptors. In addition, we could demonstrate that endogenous activation of mGlu5 receptors largely accounted for the basal PI hydrolysis particularly in the prefrontal cortex. This method offers opportunity for investigation of mGlu5 receptor signaling in physiology and pathology, and could be used for the functional screening of mGlu5 receptor PAMs in living animals.

7.
Neuropharmacology ; 128: 301-313, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29079293

RESUMEN

mGlu5 receptors are involved in mechanisms of activity-dependent synaptic plasticity, and are targeted by drugs developed for the treatment of CNS disorders. We report that mGlu3 receptors, which are traditionally linked to the control of neurotransmitter release, support mGlu5 receptor signaling in neurons and largely contribute to the robust mGlu5 receptor-mediated polyphosphoinositide hydrolysis in the early postnatal life. In cortical pyramidal neurons, mGlu3 receptor activation potentiated mGlu5 receptor-mediated somatic Ca2+ mobilization, and mGlu3 receptor-mediated long-term depression in the prefrontal cortex required the endogenous activation of mGlu5 receptors. The interaction between mGlu3 and mGlu5 receptors was also relevant to mechanisms of neuronal toxicity, with mGlu3 receptors shaping the influence of mGlu5 receptors on excitotoxic neuronal death. These findings shed new light into the complex role played by mGlu receptors in physiology and pathology, and suggest reconsideration of some of the current dogmas in the mGlu receptor field.


Asunto(s)
Sistema Nervioso Central/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Aminoácidos/farmacología , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Células Cultivadas , Sistema Nervioso Central/citología , Embrión de Mamíferos , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Hidrólisis/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Masculino , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Ratones , Ratones Endogámicos C57BL , N-Metilaspartato/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Ratas , Receptor del Glutamato Metabotropico 5/genética , Receptores de Glutamato Metabotrópico/genética
8.
Neuropharmacology ; 113(Pt A): 343-353, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27769854

RESUMEN

We studied the interaction between mGlu7 and α1-adrenergic receptors in heterologous expression systems, brain slices, and living animals. L-2-Amino-4-phosphonobutanoate (L-AP4), and l-serine-O-phosphate (L-SOP), which activate group III mGlu receptors, restrained the stimulation of polyphosphoinositide (PI) hydrolysis induced by the α1-adrenergic receptor agonist, phenylephrine, in HEK 293 cells co-expressing α1-adrenergic and mGlu7 receptors. The inibitory action of L-AP4 was abrogated by (i) the mGlu7 receptor antagonist, XAP044; (ii) the C-terminal portion of type-2 G protein coupled receptor kinase; and (iii) the MAP kinase inhibitors, UO126 and PD98059. This suggests that the functional interaction between mGlu7 and α1-adrenergic receptors was mediated by the ßγ-subunits of the Gi protein and required the activation of the MAP kinase pathway. Remarkably, activation of neither mGlu2 nor mGlu4 receptors reduced α1-adrenergic receptor-mediated PI hydrolysis. In mouse cortical slices, both L-AP4 and L-SOP were able to attenuate norepinephrine- and phenylephrine-stimulated PI hydrolysis at concentrations consistent with the activation of mGlu7 receptors. L-AP4 failed to affect norepinephrine-stimulated PI hydrolysis in cortical slices from mGlu7-/- mice, but retained its inhibitory activity in slices from mGlu4-/- mice. At behavioural level, i.c.v. injection of phenylephrine produced antidepressant-like effects in the forced swim test. The action of phenylephrine was attenuated by L-SOP, which was inactive per se. Finally, both phenylephrine and L-SOP increased corticosterone levels in mice, but the increase was halved when the two drugs were administered in combination. Our data demonstrate that α1-adrenergic and mGlu7 receptors functionally interact and suggest that this interaction might be targeted in the treatment of stress-related disorders.


Asunto(s)
Receptores Adrenérgicos alfa 1/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Transducción de Señal/fisiología , Agonistas de Receptores Adrenérgicos alfa 1/metabolismo , Agonistas de Receptores Adrenérgicos alfa 1/farmacología , Animales , Relación Dosis-Respuesta a Droga , Agonistas de Aminoácidos Excitadores/metabolismo , Agonistas de Aminoácidos Excitadores/farmacología , Células HEK293 , Humanos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Glutamato Metabotrópico/agonistas , Transducción de Señal/efectos de los fármacos
9.
Neurochem Res ; 41(4): 924-32, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26700429

RESUMEN

mGlu1 and mGlu5 metabotropic glutamate receptors are expressed in the vertebrate retina, and are co-localized in some retinal neurons. It is believed that both receptors are coupled to polyphosphoinositide (PI) hydrolysis in the retina and their function may diverge in some cells because of a differential engagement of downstream signaling molecules. Here, we show that it is only the mGlu1 receptor that is coupled to PI hydrolysis in the retina. We used either bovine retinal slices or intact mouse retinas challenged with the mixed mGlu1/5 receptor agonist, DHPG. In both models, DHPG-stimulated PI hydrolysis was abrogated by the selective mGlu1 receptor antagonist, JNJ16259685, but was insensitive to the mGlu5 receptor antagonist, MPEP. In addition, the PI response to DHPG was unchanged in the retina of mGlu5(-/-) mice but was abolished in the retina of crv4 mice lacking mGlu1 receptors. Stimulation of the mitogen-activated protein kinase pathway by DHPG in intact mouse retinas were also entirely mediated by mGlu1 receptors. Our data provide the first example of a tissue in which a biochemically detectable PI response is mediated by mGlu1, but not mGlu5, receptors. Hence, bovine retinal slices might be used as a model for the functional screening of mGlu1 receptor ligands. In addition, the mGlu1 receptor caters the potential as a drug target in the experimental treatment of degenerative disorders of the retina.


Asunto(s)
Fosfatos de Fosfatidilinositol/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Retina/metabolismo , Animales , Bovinos , Glicina/análogos & derivados , Glicina/farmacología , Hidrólisis , Fosfatos de Inositol/biosíntesis , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptor del Glutamato Metabotropico 5/agonistas , Receptor del Glutamato Metabotropico 5/genética , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/genética , Resorcinoles/farmacología , Transducción de Señal
10.
J Neurosci ; 34(13): 4558-66, 2014 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-24672001

RESUMEN

Angelman syndrome (AS) is caused by the loss of Ube3A, an ubiquitin ligase that commits specific proteins to proteasomal degradation. How this defect causes autism and other pathological phenotypes associated with AS is unknown. Long-term depression (LTD) of excitatory synaptic transmission mediated by type 5 metabotropic glutamate (mGlu5) receptors was enhanced in hippocampal slices of Ube3A(m-/p+) mice, which model AS. No changes were found in NMDA-dependent LTD induced by low-frequency stimulation. mGlu5 receptor-dependent LTD in AS mice was sensitive to the protein synthesis inhibitor anisomycin, and relied on the same signaling pathways as in wild-type mice, e.g., the mitogen-activated protein kinase (MAPK) pathway, the phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycine pathway, and protein tyrosine phosphatase. Neither the stimulation of MAPK and PI3K nor the increase in Arc (activity-regulated cytoskeleton-associated protein) levels in response to mGlu5 receptor activation were abnormal in hippocampal slices from AS mice compared with wild-type mice. mGlu5 receptor expression and mGlu1/5 receptor-mediated polyphosphoinositide hydrolysis were also unchanged in the hippocampus of AS mice. In contrast, AS mice showed a reduced expression of the short Homer protein isoform Homer 1a, and an increased coupling of mGlu5 receptors to Homer 1b/c proteins in the hippocampus. These findings support the link between Homer proteins and monogenic autism, and lay the groundwork for the use of mGlu5 receptor antagonists in AS.


Asunto(s)
Síndrome de Angelman/genética , Síndrome de Angelman/patología , Proteínas Portadoras/metabolismo , Hipocampo/fisiopatología , Depresión Sináptica a Largo Plazo/fisiología , Receptor del Glutamato Metabotropico 5/metabolismo , Ubiquitina-Proteína Ligasas/genética , Animales , Proteínas Portadoras/genética , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Hemicigoto , Hipocampo/patología , Proteínas de Andamiaje Homer , Inmunosupresores/farmacología , Técnicas In Vitro , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Piridinas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sirolimus/farmacología
11.
Neurosci Lett ; 478(3): 128-30, 2010 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-20452401

RESUMEN

The D-amino acid, D-aspartate, is abundant in the developing brain, yet its function is unknown. Addition of d-aspartate to hippocampal or cortical slices prepared from 8- to 9-day-old rats stimulated polyphosphoinositide (PI) hydrolysis to a slightly greater extent than L-glutamate. The action of D-aspartate was concentration-dependent with an apparent EC(50) value of 1 mM and a maximal stimulation of 6- and 20-fold in cortical and hippocampal slices, respectively. Stimulation of PI hydrolysis by D-aspartate was largely reduced by pharmacological blockade of mGlu5 metabotropic glutamate receptors with 2-methyl-6-(phenylethynyl)pyridine. These findings suggest that D-aspartate behaves as an endogenous agonist of mGlu5 receptors during early postnatal life.


Asunto(s)
Corteza Cerebral/metabolismo , Ácido D-Aspártico/metabolismo , Hipocampo/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/crecimiento & desarrollo , Antagonistas de Aminoácidos Excitadores/farmacología , Ácido Glutámico/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/crecimiento & desarrollo , Hidrólisis , Técnicas In Vitro , Piridinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptor del Glutamato Metabotropico 5 , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA