Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biomolecules ; 14(6)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38927107

RESUMEN

Alterations in mitochondrial function have been linked to a variety of cellular and organismal stress responses including apoptosis, aging, neurodegeneration and tumorigenesis. However, adaptation to mitochondrial dysfunction can occur through the activation of survival pathways, whose mechanisms are still poorly understood. The yeast Saccharomyces cerevisiae is an invaluable model organism for studying how mitochondrial dysfunction can affect stress response and adaptation processes. In this study, we analyzed and compared in the absence and in the presence of osmostress wild-type cells with two models of cells lacking mitochondrial DNA: ethidium bromide-treated cells (ρ0) and cells lacking the mitochondrial pyrimidine nucleotide transporter RIM2 (ΔRIM2). Our results revealed that the lack of mitochondrial DNA provides an advantage in the kinetics of stress response. Additionally, wild-type cells exhibited higher osmosensitivity in the presence of respiratory metabolism. Mitochondrial mutants showed increased glycerol levels, required in the short-term response of yeast osmoadaptation, and prolonged oxidative stress. The involvement of the mitochondrial retrograde signaling in osmoadaptation has been previously demonstrated. The expression of CIT2, encoding the peroxisomal isoform of citrate synthase and whose up-regulation is prototypical of RTG pathway activation, appeared to be increased in the mutants. Interestingly, selected TCA cycle genes, CIT1 and ACO1, whose expression depends on RTG signaling upon stress, showed a different regulation in ρ0 and ΔRIM2 cells. These data suggest that osmoadaptation can occur through different mechanisms in the presence of mitochondrial defects and will allow us to gain insight into the relationships among metabolism, mitochondria-mediated stress response, and cell adaptation.


Asunto(s)
ADN Mitocondrial , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Mitocondrias/metabolismo , Mitocondrias/genética , Adaptación Fisiológica/genética , Estrés Oxidativo/genética , Glicerol/metabolismo , Etidio/metabolismo
2.
Int J Mol Sci ; 23(9)2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35563451

RESUMEN

Mitochondrial carriers, which transport metabolites, nucleotides, and cofactors across the mitochondrial inner membrane, have six transmembrane α-helices enclosing a translocation pore with a central substrate binding site whose access is controlled by a cytoplasmic and a matrix gate (M-gate). The salt bridges formed by the three PX[DE]XX[RK] motifs located on the odd-numbered transmembrane α-helices greatly contribute to closing the M-gate. We have measured the transport rates of cysteine mutants of the charged residue positions in the PX[DE]XX[RK] motifs of the bovine oxoglutarate carrier, the yeast GTP/GDP carrier, and the yeast NAD+ transporter, which all lack one of these charged residues. Most single substitutions, including those of the non-charged and unpaired charged residues, completely inactivated transport. Double mutations of charged pairs showed that all three carriers contain salt bridges non-essential for activity. Two double substitutions of these non-essential charge pairs exhibited higher transport rates than their corresponding single mutants, whereas swapping the charged residues in these positions did not increase activity. The results demonstrate that some of the residues in the charged residue positions of the PX[DE]XX[KR] motifs are important for reasons other than forming salt bridges, probably for playing specific roles related to the substrate interaction-mediated conformational changes leading to the M-gate opening/closing.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial , Membranas Mitocondriales , Proteínas Mitocondriales , Secuencias de Aminoácidos/fisiología , Animales , Bovinos , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Conformación Proteica en Hélice alfa/fisiología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
J Clin Endocrinol Metab ; 107(5): 1346-1356, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-34971397

RESUMEN

CONTEXT: The hyperinsulinism/hyperammonemia (HI/HA) syndrome, the second-most common form of congenital hyperinsulinism, has been associated with dominant mutations in GLUD1, coding for the mitochondrial enzyme glutamate dehydrogenase, that increase enzyme activity by reducing its sensitivity to allosteric inhibition by GTP. OBJECTIVE: To identify the underlying genetic etiology in 2 siblings who presented with the biochemical features of HI/HA syndrome but did not carry pathogenic variants in GLUD1, and to determine the functional impact of the newly identified mutation. METHODS: The patients were investigated by whole exome sequencing. Yeast complementation studies and biochemical assays on the recombinant mutated protein were performed. The consequences of stable slc25a36 silencing in HeLa cells were also investigated. RESULTS: A homozygous splice site variant was identified in solute carrier family 25, member 36 (SLC25A36), encoding the pyrimidine nucleotide carrier 2 (PNC2), a mitochondrial nucleotide carrier that transports pyrimidine as well as guanine nucleotides across the inner mitochondrial membrane. The mutation leads to a 26-aa in-frame deletion in the first repeat domain of the protein, which abolishes transport activity. Furthermore, knockdown of slc25a36 expression in HeLa cells caused a marked reduction in the mitochondrial GTP content, which likely leads to a hyperactivation of glutamate dehydrogenase in our patients. CONCLUSION: We report for the first time a mutation in PNC2/SLC25A36 leading to HI/HA and provide functional evidence of the molecular mechanism responsible for this phenotype. Our findings underscore the importance of mitochondrial nucleotide metabolism and expand the role of mitochondrial transporters in insulin secretion.


Asunto(s)
Hiperinsulinismo Congénito , Hiperamonemia , Hiperinsulinismo , Hiperinsulinismo Congénito/genética , Glutamato Deshidrogenasa/genética , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Hiperamonemia/genética , Hiperinsulinismo/genética , Hipoglucemia , Mutación , Nucleótidos
4.
Biomedicines ; 9(11)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34829892

RESUMEN

Metabolic reprogramming is a hallmark of cancer cells required to ensure high energy needs and the maintenance of redox balance. A relevant metabolic change of cancer cell bioenergetics is the increase in glutamine metabolism. Hepatocellular carcinoma (HCC), one of the most lethal cancer and which requires the continuous development of new therapeutic strategies, shows an up-regulation of human glutamate dehydrogenase 1 (hGDH1). GDH1 function may be relevant in cancer cells (or HCC) to drive the glutamine catabolism from L-glutamate towards the synthesis of α-ketoglutarate (α-KG), thus supplying key tricarboxylic acid cycle (TCA cycle) metabolites. Here, the effects of hGLUD1 gene silencing (siGLUD1) and GDH1 inhibition were evaluated. Our results demonstrate that siGLUD1 in HepG2 cells induces a significant reduction in cell proliferation (58.8% ± 10.63%), a decrease in BCL2 expression levels, mitochondrial mass (75% ± 5.89%), mitochondrial membrane potential (30% ± 7.06%), and a significant increase in mitochondrial superoxide anion (25% ± 6.55%) compared to control/untreated cells. The inhibition strategy leads us to identify two possible inhibitors of hGDH1: quercetin and Permethylated Anigopreissin A (PAA). These findings suggest that hGDH1 could be a potential candidate target to impair the metabolic reprogramming of HCC cells.

5.
EMBO Mol Med ; 12(10): e11210, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32885605

RESUMEN

Glutamine synthetase (GS) generates glutamine from glutamate and controls the release of inflammatory mediators. In macrophages, GS activity, driven by IL10, associates to the acquisition of M2-like functions. Conditional deletion of GS in macrophages inhibits metastasis by boosting the formation of anti-tumor, M1-like, tumor-associated macrophages (TAMs). From this basis, we evaluated the pharmacological potential of GS inhibitors in targeting metastasis, identifying glufosinate as a specific human GS inhibitor. Glufosinate was tested in both cultured macrophages and on mice bearing metastatic lung, skin and breast cancer. We found that glufosinate rewires macrophages toward an M1-like phenotype both at the primary tumor and metastatic site, countering immunosuppression and promoting vessel sprouting. This was also accompanied to a reduction in cancer cell intravasation and extravasation, leading to synchronous and metachronous metastasis growth inhibition, but no effects on primary tumor growth. Glufosinate treatment was well-tolerated, without liver and brain toxicity, nor hematopoietic defects. These results identify GS as a druggable enzyme to rewire macrophage functions and highlight the potential of targeting metabolic checkpoints in macrophages to treat cancer metastasis.


Asunto(s)
Neoplasias de la Mama , Macrófagos , Aminobutiratos , Animales , Femenino , Humanos , Mediadores de Inflamación , Ratones
6.
Biochem Pharmacol ; 100: 112-32, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26616220

RESUMEN

Mitochondrial carriers are proteins that shuttle a variety of metabolites, nucleotides and coenzymes across the inner mitochondrial membrane. The mitochondrial ADP/ATP carriers (AACs) specifically translocate the ATP synthesized within mitochondria to the cytosol in exchange for the cytosolic ADP, playing a key role in energy production, in promoting cell viability and regulating mitochondrial permeability transition pore opening. In Homo sapiens four genes code for AACs with different tissue distribution and expression patterns. Since AACs are dysregulated in several cancer types, the employment of known and new AAC inhibitors might be crucial for inducing mitochondrial-mediated apoptosis in cancer cells. Albeit carboxyatractyloside (CATR) and bongkrekic acid (BKA) are known to be powerful and highly selective AAC inhibitors, able to induce mitochondrial dysfunction at molecular level and poisoning at physiological level, we estimated here for the first time their affinity for the human recombinant AAC2 by in vitro transport assays. We found that the inhibition constants of CATR and BKA are 4 nM and 2.0 µM, respectively. For finding new AAC inhibitors we also performed a docking-based virtual screening of an in-house developed chemical library and we identified about 100 ligands showing high affinity for the AAC2 binding region. By testing 13 commercially available molecules, out of the 100 predicted candidates, we found that 2 of them, namely suramin and chebulinic acid, are competitive AAC2 inhibitors with inhibition constants 0.3 µM and 2.1 µM, respectively. We also demonstrated that chebulinic acid and suramin are "highly selective" AAC2 inhibitors, since they poorly inhibit other human mitochondrial carriers (namely ORC1, APC1 and AGC1).


Asunto(s)
Translocasas Mitocondriales de ADP y ATP/antagonistas & inhibidores , Translocasas Mitocondriales de ADP y ATP/metabolismo , Simulación del Acoplamiento Molecular/métodos , Secuencia de Aminoácidos , Atractilósido/análogos & derivados , Atractilósido/química , Atractilósido/metabolismo , Atractilósido/farmacología , Linfocitos B/efectos de los fármacos , Linfocitos B/metabolismo , Sitios de Unión/fisiología , Ácido Bongcréquico/química , Ácido Bongcréquico/metabolismo , Ácido Bongcréquico/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Translocasas Mitocondriales de ADP y ATP/química , Datos de Secuencia Molecular , Transporte de Proteínas/fisiología
7.
Biochim Biophys Acta ; 1837(2): 326-34, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24296033

RESUMEN

The genome of Saccharomyces cerevisiae contains 35 members of the mitochondrial carrier family, nearly all of which have been functionally characterized. In this study, the identification of the mitochondrial carrier for adenosine 5'-phosphosulfate (APS) is described. The corresponding gene (YPR011c) was overexpressed in bacteria. The purified protein was reconstituted into phospholipid vesicles and its transport properties and kinetic parameters were characterized. It transported APS, 3'-phospho-adenosine 5'-phosphosulfate, sulfate and phosphate almost exclusively by a counter-exchange mechanism. Transport was saturable and inhibited by bongkrekic acid and other inhibitors. To investigate the physiological significance of this carrier in S. cerevisiae, mutants were subjected to thermal shock at 45°C in the presence of sulfate and in the absence of methionine. At 45°C cells lacking YPR011c, engineered cells (in which APS is produced only in mitochondria) and more so the latter cells, in which the exit of mitochondrial APS is prevented by the absence of YPR011cp, were less thermotolerant. Moreover, at the same temperature all these cells contained less methionine and total glutathione than wild-type cells. Our results show that S. cerevisiae mitochondria are equipped with a transporter for APS and that YPR011cp-mediated mitochondrial transport of APS occurs in S. cerevisiae under thermal stress conditions.


Asunto(s)
Adenosina Fosfosulfato/metabolismo , Genes Fúngicos/genética , Mitocondrias/metabolismo , Fosfoadenosina Fosfosulfato/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Adaptación Fisiológica , Transporte Biológico/genética , Coenzima A/metabolismo , Escherichia coli/metabolismo , Prueba de Complementación Genética , Glutatión/metabolismo , Cinética , Metionina/metabolismo , Proteínas Mutantes/metabolismo , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA