Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Neurointerv Surg ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702182

RESUMEN

BACKGROUND: In mechanical thrombectomy (MT), extracranial vascular tortuosity is among the main determinants of procedure duration and success. Currently, no rapid and reliable method exists to identify the anatomical features precluding fast and stable access to the cervical vessels. METHODS: A retrospective sample of 513 patients were included in this study. Patients underwent first-line transfemoral MT following anterior circulation large vessel occlusion stroke. Difficult transfemoral access (DTFA) was defined as impossible common carotid catheterization or time from groin puncture to first carotid angiogram >30 min. A machine learning model based on 29 anatomical features automatically extracted from head-and-neck computed tomography angiography (CTA) was developed to predict DTFA. Three experienced raters independently assessed the likelihood of DTFA on a reduced cohort of 116 cases using a Likert scale as benchmark for the model, using preprocedural CTA as well as automatic 3D vascular segmentation separately. RESULTS: Among the study population, 11.5% of procedures (59/513) presented DTFA. Six different features from the aortic, supra-aortic, and cervical regions were included in the model. Cross-validation resulted in an area under the receiver operating characteristic (AUROC) curve of 0.76 (95% CI 0.75 to 0.76) for DTFA prediction, with high sensitivity for impossible access identification (0.90, 95% CI 0.81 to 0.94). The model outperformed human assessment in the reduced cohort [F1-score (95% CI) by experts with CTA: 0.43 (0.37 to 0.50); experts with 3D segmentation: 0.50 (0.46 to 0.54); and model: 0.70 (0.65 to 0.75)]. CONCLUSIONS: A fully automatic model for DTFA prediction was developed and validated. The presented method improved expert assessment of difficult access prediction in stroke MT. Derived information could be used to guide decisions regarding arterial access for MT.

2.
Eur J Radiol ; 175: 111457, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38640824

RESUMEN

PURPOSE: This review provides an overview of the current state of artificial intelligence (AI) technology for automated detection of breast cancer in digital mammography (DM) and digital breast tomosynthesis (DBT). It aims to discuss the technology, available AI systems, and the challenges faced by AI in breast cancer screening. METHODS: The review examines the development of AI technology in breast cancer detection, focusing on deep learning (DL) techniques and their differences from traditional computer-aided detection (CAD) systems. It discusses data pre-processing, learning paradigms, and the need for independent validation approaches. RESULTS: DL-based AI systems have shown significant improvements in breast cancer detection. They have the potential to enhance screening outcomes, reduce false negatives and positives, and detect subtle abnormalities missed by human observers. However, challenges like the lack of standardised datasets, potential bias in training data, and regulatory approval hinder their widespread adoption. CONCLUSIONS: AI technology has the potential to improve breast cancer screening by increasing accuracy and reducing radiologist workload. DL-based AI systems show promise in enhancing detection performance and eliminating variability among observers. Standardised guidelines and trustworthy AI practices are necessary to ensure fairness, traceability, and robustness. Further research and validation are needed to establish clinical trust in AI. Collaboration between researchers, clinicians, and regulatory bodies is crucial to address challenges and promote AI implementation in breast cancer screening.


Asunto(s)
Inteligencia Artificial , Neoplasias de la Mama , Mamografía , Neoplasias de la Mama/diagnóstico por imagen , Humanos , Femenino , Mamografía/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Detección Precoz del Cáncer/métodos
3.
Eur Radiol Exp ; 8(1): 42, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38589742

RESUMEN

BACKGROUND: Developing trustworthy artificial intelligence (AI) models for clinical applications requires access to clinical and imaging data cohorts. Reusing of publicly available datasets has the potential to fill this gap. Specifically in the domain of breast cancer, a large archive of publicly accessible medical images along with the corresponding clinical data is available at The Cancer Imaging Archive (TCIA). However, existing datasets cannot be directly used as they are heterogeneous and cannot be effectively filtered for selecting specific image types required to develop AI models. This work focuses on the development of a homogenized dataset in the domain of breast cancer including clinical and imaging data. METHODS: Five datasets were acquired from the TCIA and were harmonized. For the clinical data harmonization, a common data model was developed and a repeatable, documented "extract-transform-load" process was defined and executed for their homogenization. Further, Digital Imaging and COmmunications in Medicine (DICOM) information was extracted from magnetic resonance imaging (MRI) data and made accessible and searchable. RESULTS: The resulting harmonized dataset includes information about 2,035 subjects with breast cancer. Further, a platform named RV-Cherry-Picker enables search over both the clinical and diagnostic imaging datasets, providing unified access, facilitating the downloading of all study imaging that correspond to specific series' characteristics (e.g., dynamic contrast-enhanced series), and reducing the burden of acquiring the appropriate set of images for the respective AI model scenario. CONCLUSIONS: RV-Cherry-Picker provides access to the largest, publicly available, homogenized, imaging/clinical dataset for breast cancer to develop AI models on top. RELEVANCE STATEMENT: We present a solution for creating merged public datasets supporting AI model development, using as an example the breast cancer domain and magnetic resonance imaging images. KEY POINTS: • The proposed platform allows unified access to the largest, homogenized public imaging dataset for breast cancer. • A methodology for the semantically enriched homogenization of public clinical data is presented. • The platform is able to make a detailed selection of breast MRI data for the development of AI models.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Inteligencia Artificial , Mama
4.
Med Phys ; 51(2): 712-739, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38018710

RESUMEN

Currently, there are multiple breast dosimetry estimation methods for mammography and its variants in use throughout the world. This fact alone introduces uncertainty, since it is often impossible to distinguish which model is internally used by a specific imaging system. In addition, all current models are hampered by various limitations, in terms of overly simplified models of the breast and its composition, as well as simplistic models of the imaging system. Many of these simplifications were necessary, for the most part, due to the need to limit the computational cost of obtaining the required dose conversion coefficients decades ago, when these models were first implemented. With the advancements in computational power, and to address most of the known limitations of previous breast dosimetry methods, a new breast dosimetry method, based on new breast models, has been developed, implemented, and tested. This model, developed jointly by the American Association of Physicists in Medicine and the European Federation for Organizations of Medical Physics, is applicable to standard mammography, digital breast tomosynthesis, and their contrast-enhanced variants. In addition, it includes models of the breast in both the cranio-caudal and the medio-lateral oblique views. Special emphasis was placed on the breast and system models used being based on evidence, either by analysis of large sets of patient data or by performing measurements on imaging devices from a range of manufacturers. Due to the vast number of dose conversion coefficients resulting from the developed model, and the relative complexity of the calculations needed to apply it, a software program has been made available for download or online use, free of charge, to apply the developed breast dosimetry method. The program is available for download or it can be used directly online. A separate User's Guide is provided with the software.


Asunto(s)
Neoplasias de la Mama , Mama , Humanos , Femenino , Mama/diagnóstico por imagen , Mamografía/métodos , Radiometría/métodos , Método de Montecarlo , Neoplasias de la Mama/diagnóstico por imagen
5.
Int J Med Inform ; 179: 105209, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37729839

RESUMEN

BACKGROUND: The human exposome encompasses all exposures that individuals encounter throughout their lifetime. It is now widely acknowledged that health outcomes are influenced not only by genetic factors but also by the interactions between these factors and various exposures. Consequently, the exposome has emerged as a significant contributor to the overall risk of developing major diseases, such as cardiovascular disease (CVD) and diabetes. Therefore, personalized early risk assessment based on exposome attributes might be a promising tool for identifying high-risk individuals and improving disease prevention. OBJECTIVE: Develop and evaluate a novel and fair machine learning (ML) model for CVD and type 2 diabetes (T2D) risk prediction based on a set of readily available exposome factors. We evaluated our model using internal and external validation groups from a multi-center cohort. To be considered fair, the model was required to demonstrate consistent performance across different sub-groups of the cohort. METHODS: From the UK Biobank, we identified 5,348 and 1,534 participants who within 13 years from the baseline visit were diagnosed with CVD and T2D, respectively. An equal number of participants who did not develop these pathologies were randomly selected as the control group. 109 readily available exposure variables from six different categories (physical measures, environmental, lifestyle, mental health events, sociodemographics, and early-life factors) from the participant's baseline visit were considered. We adopted the XGBoost ensemble model to predict individuals at risk of developing the diseases. The model's performance was compared to that of an integrative ML model which is based on a set of biological, clinical, physical, and sociodemographic variables, and, additionally for CVD, to the Framingham risk score. Moreover, we assessed the proposed model for potential bias related to sex, ethnicity, and age. Lastly, we interpreted the model's results using SHAP, a state-of-the-art explainability method. RESULTS: The proposed ML model presents a comparable performance to the integrative ML model despite using solely exposome information, achieving a ROC-AUC of 0.78±0.01 and 0.77±0.01 for CVD and T2D, respectively. Additionally, for CVD risk prediction, the exposome-based model presents an improved performance over the traditional Framingham risk score. No bias in terms of key sensitive variables was identified. CONCLUSIONS: We identified exposome factors that play an important role in identifying patients at risk of CVD and T2D, such as naps during the day, age completed full-time education, past tobacco smoking, frequency of tiredness/unenthusiasm, and current work status. Overall, this work demonstrates the potential of exposome-based machine learning as a fair CVD and T2D risk assessment tool.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Exposoma , Humanos , Diabetes Mellitus Tipo 2/epidemiología , Factores de Riesgo , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Aprendizaje Automático
6.
7.
J Med Imaging (Bellingham) ; 10(6): 061403, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36814939

RESUMEN

Purpose: Deep learning has shown great promise as the backbone of clinical decision support systems. Synthetic data generated by generative models can enhance the performance and capabilities of data-hungry deep learning models. However, there is (1) limited availability of (synthetic) datasets and (2) generative models are complex to train, which hinders their adoption in research and clinical applications. To reduce this entry barrier, we explore generative model sharing to allow more researchers to access, generate, and benefit from synthetic data. Approach: We propose medigan, a one-stop shop for pretrained generative models implemented as an open-source framework-agnostic Python library. After gathering end-user requirements, design decisions based on usability, technical feasibility, and scalability are formulated. Subsequently, we implement medigan based on modular components for generative model (i) execution, (ii) visualization, (iii) search & ranking, and (iv) contribution. We integrate pretrained models with applications across modalities such as mammography, endoscopy, x-ray, and MRI. Results: The scalability and design of the library are demonstrated by its growing number of integrated and readily-usable pretrained generative models, which include 21 models utilizing nine different generative adversarial network architectures trained on 11 different datasets. We further analyze three medigan applications, which include (a) enabling community-wide sharing of restricted data, (b) investigating generative model evaluation metrics, and (c) improving clinical downstream tasks. In (b), we extract Fréchet inception distances (FID) demonstrating FID variability based on image normalization and radiology-specific feature extractors. Conclusion: medigan allows researchers and developers to create, increase, and domain-adapt their training data in just a few lines of code. Capable of enriching and accelerating the development of clinical machine learning models, we show medigan's viability as platform for generative model sharing. Our multimodel synthetic data experiments uncover standards for assessing and reporting metrics, such as FID, in image synthesis studies.

8.
Med Image Anal ; 84: 102704, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36473414

RESUMEN

Despite technological and medical advances, the detection, interpretation, and treatment of cancer based on imaging data continue to pose significant challenges. These include inter-observer variability, class imbalance, dataset shifts, inter- and intra-tumour heterogeneity, malignancy determination, and treatment effect uncertainty. Given the recent advancements in image synthesis, Generative Adversarial Networks (GANs), and adversarial training, we assess the potential of these technologies to address a number of key challenges of cancer imaging. We categorise these challenges into (a) data scarcity and imbalance, (b) data access and privacy, (c) data annotation and segmentation, (d) cancer detection and diagnosis, and (e) tumour profiling, treatment planning and monitoring. Based on our analysis of 164 publications that apply adversarial training techniques in the context of cancer imaging, we highlight multiple underexplored solutions with research potential. We further contribute the Synthesis Study Trustworthiness Test (SynTRUST), a meta-analysis framework for assessing the validation rigour of medical image synthesis studies. SynTRUST is based on 26 concrete measures of thoroughness, reproducibility, usefulness, scalability, and tenability. Based on SynTRUST, we analyse 16 of the most promising cancer imaging challenge solutions and observe a high validation rigour in general, but also several desirable improvements. With this work, we strive to bridge the gap between the needs of the clinical cancer imaging community and the current and prospective research on data synthesis and adversarial networks in the artificial intelligence community.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Neoplasias , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Inteligencia Artificial , Reproducibilidad de los Resultados , Estudios Prospectivos , Neoplasias/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
9.
Artif Intell Med ; 132: 102386, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36207090

RESUMEN

Computer-aided detection systems based on deep learning have shown great potential in breast cancer detection. However, the lack of domain generalization of artificial neural networks is an important obstacle to their deployment in changing clinical environments. In this study, we explored the domain generalization of deep learning methods for mass detection in digital mammography and analyzed in-depth the sources of domain shift in a large-scale multi-center setting. To this end, we compared the performance of eight state-of-the-art detection methods, including Transformer based models, trained in a single domain and tested in five unseen domains. Moreover, a single-source mass detection training pipeline was designed to improve the domain generalization without requiring images from the new domain. The results show that our workflow generalized better than state-of-the-art transfer learning based approaches in four out of five domains while reducing the domain shift caused by the different acquisition protocols and scanner manufacturers. Subsequently, an extensive analysis was performed to identify the covariate shifts with the greatest effects on detection performance, such as those due to differences in patient age, breast density, mass size, and mass malignancy. Ultimately, this comprehensive study provides key insights and best practices for future research on domain generalization in deep learning based breast cancer detection.


Asunto(s)
Neoplasias de la Mama , Aprendizaje Profundo , Neoplasias de la Mama/diagnóstico por imagen , Femenino , Humanos , Aprendizaje Automático , Mamografía/métodos , Redes Neurales de la Computación
10.
Med Phys ; 49(8): 5423-5438, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35635844

RESUMEN

BACKGROUND: Understanding the magnitude and variability of the radiation dose absorbed by the breast fibroglandular tissue during mammography and digital breast tomosynthesis (DBT) is of paramount importance to assess risks versus benefits. Although homogeneous breast models have been proposed and used for decades for this purpose, they do not accurately reflect the actual heterogeneous distribution of the fibroglandular tissue in the breast, leading to biases in the estimation of dose from these modalities. PURPOSE: To develop and validate a method to generate patient-derived, heterogeneous digital breast phantoms for breast dosimetry in mammography and DBT. METHODS: The proposed phantoms were developed starting from patient-based models of compressed breasts, generated for multiple thicknesses and representing the two standard views acquired in mammography and DBT, that is, cranio-caudal (CC) and medio-lateral-oblique (MLO). Internally, the breast phantoms were defined as consisting of an adipose/fibroglandular tissue mixture, with a nonspatially uniform relative concentration. The parenchyma distributions were obtained from a previously described model based on patient breast computed tomography data that underwent simulated compression. Following these distributions, phantoms with any glandular fraction (1%-100%) and breast thickness (12-125 mm) can be generated, for both views. The phantoms were validated, in terms of their accuracy for average normalized glandular dose (Dg N) estimation across samples of patient breasts, using 88 patient-specific phantoms involving actual patient distribution of the fibroglandular tissue in the breast, and compared to that obtained using a homogeneous model similar to those currently used for breast dosimetry. RESULTS: The average Dg N estimated for the proposed phantoms was concordant with that absorbed by the patient-specific phantoms to within 5% (CC) and 4% (MLO). These Dg N estimates were over 30% lower than those estimated with the homogeneous models, which overestimated the average Dg N by 43% (CC), and 32% (MLO) compared to the patient-specific phantoms. CONCLUSIONS: The developed phantoms can be used for dosimetry simulations to improve the accuracy of dose estimates in mammography and DBT.


Asunto(s)
Neoplasias de la Mama , Mamografía , Mama/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico por imagen , Femenino , Humanos , Mamografía/métodos , Fantasmas de Imagen , Radiometría/métodos , Tomografía Computarizada por Rayos X/métodos
11.
Front Oncol ; 12: 1044496, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36755853

RESUMEN

Computer-aided detection systems based on deep learning have shown good performance in breast cancer detection. However, high-density breasts show poorer detection performance since dense tissues can mask or even simulate masses. Therefore, the sensitivity of mammography for breast cancer detection can be reduced by more than 20% in dense breasts. Additionally, extremely dense cases reported an increased risk of cancer compared to low-density breasts. This study aims to improve the mass detection performance in high-density breasts using synthetic high-density full-field digital mammograms (FFDM) as data augmentation during breast mass detection model training. To this end, a total of five cycle-consistent GAN (CycleGAN) models using three FFDM datasets were trained for low-to-high-density image translation in high-resolution mammograms. The training images were split by breast density BI-RADS categories, being BI-RADS A almost entirely fatty and BI-RADS D extremely dense breasts. Our results showed that the proposed data augmentation technique improved the sensitivity and precision of mass detection in models trained with small datasets and improved the domain generalization of the models trained with large databases. In addition, the clinical realism of the synthetic images was evaluated in a reader study involving two expert radiologists and one surgical oncologist.

12.
Med Image Anal ; 71: 102061, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33910108

RESUMEN

The two-dimensional nature of mammography makes estimation of the overall breast density challenging, and estimation of the true patient-specific radiation dose impossible. Digital breast tomosynthesis (DBT), a pseudo-3D technique, is now commonly used in breast cancer screening and diagnostics. Still, the severely limited 3rd dimension information in DBT has not been used, until now, to estimate the true breast density or the patient-specific dose. This study proposes a reconstruction algorithm for DBT based on deep learning specifically optimized for these tasks. The algorithm, which we name DBToR, is based on unrolling a proximal-dual optimization method. The proximal operators are replaced with convolutional neural networks and prior knowledge is included in the model. This extends previous work on a deep learning-based reconstruction model by providing both the primal and the dual blocks with breast thickness information, which is available in DBT. Training and testing of the model were performed using virtual patient phantoms from two different sources. Reconstruction performance, and accuracy in estimation of breast density and radiation dose, were estimated, showing high accuracy (density <±3%; dose <±20%) without bias, significantly improving on the current state-of-the-art. This work also lays the groundwork for developing a deep learning-based reconstruction algorithm for the task of image interpretation by radiologists.


Asunto(s)
Neoplasias de la Mama , Aprendizaje Profundo , Mama/diagnóstico por imagen , Densidad de la Mama , Neoplasias de la Mama/diagnóstico por imagen , Femenino , Humanos , Mamografía , Dosis de Radiación
13.
Med Phys ; 48(3): 1436-1447, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33452822

RESUMEN

PURPOSE: To develop a patient-based breast density model by characterizing the fibroglandular tissue distribution in patient breasts during compression for mammography and digital breast tomosynthesis (DBT) imaging. METHODS: In this prospective study, 88 breast images were acquired using a dedicated breast computed tomography (CT) system. The breasts in the images were classified into their three main tissue components and mechanically compressed to mimic the positioning for mammographic acquisition of the craniocaudal (CC) and mediolateral oblique (MLO) views. The resulting fibroglandular tissue distribution during these compressions was characterized by dividing the compressed breast volume into small regions, for which the median and the 25th and 75th percentile values of local fibroglandular density were obtained in the axial, coronal, and sagittal directions. The best fitting function, based on the likelihood method, for the median distribution was obtained in each direction. RESULTS: The fibroglandular tissue tends to concentrate toward the caudal (about 15% below the midline of the breast) and anterior regions of the breast, in both the CC- and MLO-view compressions. A symmetrical distribution was found in the MLO direction in the case of the CC-view compression, while a shift of about 12% toward the lateral direction was found in the MLO-view case. CONCLUSIONS: The location of the fibroglandular tissue in the breast under compression during mammography and DBT image acquisition is a major factor for determining the actual glandular dose imparted during these examinations. A more realistic model of the parenchyma in the compressed breast, based on patient image data, was developed. This improved model more accurately reflects the fibroglandular tissue spatial distribution that can be found in patient breasts, and therefore might aid in future studies involving radiation dose and/or cancer development risk estimation.


Asunto(s)
Neoplasias de la Mama , Mamografía , Mama/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico por imagen , Humanos , Estudios Prospectivos , Distribución Tisular , Tomografía Computarizada por Rayos X
14.
Comput Biol Med ; 121: 103774, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32339095

RESUMEN

In recent years, the use of Convolutional Neural Networks (CNNs) in medical imaging has shown improved performance in terms of mass detection and classification compared to current state-of-the-art methods. This paper proposes a fully automated framework to detect masses in Full-Field Digital Mammograms (FFDM). This is based on the Faster Region-based Convolutional Neural Network (Faster-RCNN) model and is applied for detecting masses in the large-scale OPTIMAM Mammography Image Database (OMI-DB), which consists of ∼80,000 FFDMs mainly from Hologic and General Electric (GE) scanners. This research is the first to benchmark the performance of deep learning on OMI-DB. The proposed framework obtained a True Positive Rate (TPR) of 0.93 at 0.78 False Positive per Image (FPI) on FFDMs from the Hologic scanner. Transfer learning is then used in the Faster R-CNN model trained on Hologic images to detect masses in smaller databases containing FFDMs from the GE scanner and another public dataset INbreast (Siemens scanner). The detection framework obtained a TPR of 0.91±0.06 at 1.69 FPI for images from the GE scanner and also showed higher performance compared to state-of-the-art methods on the INbreast dataset, obtaining a TPR of 0.99±0.03 at 1.17 FPI for malignant and 0.85±0.08 at 1.0 FPI for benign masses, showing the potential to be used as part of an advanced CAD system for breast cancer screening.


Asunto(s)
Neoplasias de la Mama , Aprendizaje Profundo , Neoplasias de la Mama/diagnóstico por imagen , Diagnóstico por Computador , Detección Precoz del Cáncer , Femenino , Humanos , Mamografía , Redes Neurales de la Computación
15.
Med Phys ; 46(11): 4826-4836, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31410861

RESUMEN

PURPOSE: Virtual clinical trials (VCT) are a powerful imaging tool that can be used to investigate digital breast tomosynthesis (DBT) technology. In this work, a fast and simple method is proposed to estimate the two-dimensional distribution of scattered radiation which is needed when simulating DBT geometries in VCTs. METHODS: Monte Carlo simulations are used to precalculate scatter-to-primary ratio (SPR) for a range of low-resolution homogeneous phantoms. The resulting values can be used to estimate the two-dimensional (2D) distribution of scattered radiation arising from inhomogeneous anthropomorphic phantoms used in VCTs. The method has been validated by comparing the values of the scatter thus obtained against the results of direct Monte Carlo simulation for three different types of inhomogeneous anthropomorphic phantoms. RESULTS: Differences between the proposed scatter field estimation method and the ground truth data for the OPTIMAM phantom had an average modulus and standard deviation of over the projected breast area of 2.4 ± 0.9% (minimum -17.0%, maximum 27.7%). The corresponding values for the University of Pennsylvania and Duke University breast phantoms were 1.8 ± 0.1% (minimum -8.7%, maximum 8.0%) and 5.1 ± 0.1% (minimum -16.2%, maximum 7.4%), respectively. CONCLUSIONS: The proposed method, which has been validated using three of the most common breast models, is a useful tool for accurately estimating scattered radiation in VCT schemes used to study current designs of DBT system.


Asunto(s)
Mamografía , Método de Montecarlo , Dispersión de Radiación , Simulación por Computador , Fantasmas de Imagen , Factores de Tiempo
16.
Med Image Anal ; 54: 76-87, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30836308

RESUMEN

Breast magnetic resonance imaging (MRI) and X-ray mammography are two image modalities widely used for early detection and diagnosis of breast diseases in women. The combination of these modalities, traditionally done using intensity-based registration algorithms, leads to a more accurate diagnosis and treatment, due to the capability of co-localizing lesions and susceptibles areas between the two image modalities. In this work, we present the first attempt to register breast MRI and X-ray mammographic images using intensity gradients as the similarity measure. Specifically, a patient-specific biomechanical model of the breast, extracted from the MRI image, is used to mimic the mammographic acquisition. The intensity gradients of the glandular tissue are directly projected from the 3D MRI volume to the 2D mammographic space, and two different gradient-based metrics are tested to lead the registration, the normalized cross-correlation of the scalar gradient values and the gradient correlation of the vectoral gradients. We compare these two approaches to an intensity-based algorithm, where the MRI volume is transformed to a synthetic computed tomography (pseudo-CT) image using the partial volume effect obtained by the glandular tissue segmentation performed by means of an Expectation-Maximization algorithm. This allows us to obtain the digitally reconstructed radiographies by a direct intensity projection. The best results are obtained using the scalar gradient approach along with a transversal isotropic material model, obtaining a target registration error (TRE), in millimeters, of 5.65 ±â€¯2.76 for CC- and of 7.83 ±â€¯3.04 for MLO-mammograms, while the TRE is 7.33 ±â€¯3.62 in the 3D MRI. We also evaluate the effect of the glandularity of the breast as well as the landmark position on the TRE, obtaining moderated correlation values (0.65 and 0.77 respectively), concluding that these aspects need to be considered to increase the accuracy in further approaches.


Asunto(s)
Mama/diagnóstico por imagen , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética , Mamografía , Imagen Multimodal , Algoritmos , Puntos Anatómicos de Referencia , Artefactos , Neoplasias de la Mama/diagnóstico por imagen , Medios de Contraste , Femenino , Humanos , Imagenología Tridimensional
17.
J Med Imaging (Bellingham) ; 6(3): 031409, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35834317

RESUMEN

With recent advances in the field of deep learning, the use of convolutional neural networks (CNNs) in medical imaging has become very encouraging. The aim of our paper is to propose a patch-based CNN method for automated mass detection in full-field digital mammograms (FFDM). In addition to evaluating CNNs pretrained with the ImageNet dataset, we investigate the use of transfer learning for a particular domain adaptation. First, the CNN is trained using a large public database of digitized mammograms (CBIS-DDSM dataset), and then the model is transferred and tested onto the smaller database of digital mammograms (INbreast dataset). We evaluate three widely used CNNs (VGG16, ResNet50, InceptionV3) and show that the InceptionV3 obtains the best performance for classifying the mass and nonmass breast region for CBIS-DDSM. We further show the benefit of domain adaptation between the CBIS-DDSM (digitized) and INbreast (digital) datasets using the InceptionV3 CNN. Mass detection evaluation follows a fivefold cross-validation strategy using free-response operating characteristic curves. Results show that the transfer learning from CBIS-DDSM obtains a substantially higher performance with the best true positive rate (TPR) of 0.98 ± 0.02 at 1.67 false positives per image (FPI), compared with transfer learning from ImageNet with TPR of 0.91 ± 0.07 at 2.1 FPI. In addition, the proposed framework improves upon mass detection results described in the literature on the INbreast database, in terms of both TPR and FPI.

18.
Phys Med Biol ; 64(1): 015003, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30524034

RESUMEN

Digital breast tomosynthesis (DBT) is currently used as an adjunct technique to digital mammography (DM) for breast cancer imaging. Being a quasi-3D image, DBT is capable of providing depth information on the internal breast glandular tissue distribution, which may be enough to obtain an accurate patient-specific radiation dose estimate. However, for this, information regarding the location of the glandular tissue, especially in the vertical direction (i.e. x-ray source to detector), is needed. Therefore, a dedicated reconstruction algorithm designed to localize the amount of glandular tissue, rather than for optimal diagnostic value, could be desirable. Such a reconstruction algorithm, or, alternatively, a reconstructed DBT image classification algorithm, could benefit from the use of larger voxels, rather than the small sizes typically used for the diagnostic task. In addition, the Monte Carlo (MC) based dose estimates would be accelerated by the representation of the breast tissue with fewer and larger voxels. Therefore, in this study we investigate the optimal DBT reconstructed voxel size that allows accurate dose evaluations (i.e. within 5%) using a validated Geant4-based MC code. For this, sixty patient-based breast models, previously acquired using dedicated breast computed tomography (BCT) images, were deformed to reproduce the breast during compression under a given DBT scenario. Two re-binning approaches were applied to the compressed phantoms, leading to isotropic and anisotropic voxels of different volumes. MC DBT simulations were performed reproducing the acquisition geometry of a SIEMENS Mammomat Inspiration system. Results show that isotropic cubic voxels of 2.73 mm size provide a dose estimate accurate to within 5% for 51/60 patients, while a comparable accuracy is obtained with anisotropic voxels of dimension 5.46 × 5.46 × 2.73 mm3. In addition, the MC simulation time is reduced by more than half in respect to the original voxel dimension of 0.273 × 0.273 × 0.273 mm3 when either of the proposed re-binning approaches is used. No significant differences in the effect of binning on the dose estimates are observed (Wilcoxon-Mann-Whitney test, p-value > 0.4) between the 0° the 23° (i.e. the widest angular range) exposure.


Asunto(s)
Mamografía , Método de Montecarlo , Radiometría/métodos , Algoritmos , Mama/diagnóstico por imagen , Femenino , Humanos , Imagenología Tridimensional , Fantasmas de Imagen
19.
IEEE Trans Med Imaging ; 37(3): 712-723, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28885152

RESUMEN

In this paper, we aim to produce a realistic 2-D projection of the breast parenchymal distribution from a 3-D breast magnetic resonance image (MRI). To evaluate the accuracy of our simulation, we compare our results with the local breast density (i.e., density map) obtained from the complementary full-field digital mammogram. To achieve this goal, we have developed a fully automatic framework, which registers MRI volumes to X-ray mammograms using a subject-specific biomechanical model of the breast. The optimization step modifies the position, orientation, and elastic parameters of the breast model to perform the alignment between the images. When the model reaches an optimal solution, the MRI glandular tissue is projected and compared with the one obtained from the corresponding mammograms. To reduce the loss of information during the ray-casting, we introduce a new approach that avoids resampling the MRI volume. In the results, we focus our efforts on evaluating the agreement of the distributions of glandular tissue, the degree of structural similarity, and the correlation between the real and synthetic density maps. Our approach obtained a high-structural agreement regardless the glandularity of the breast, whilst the similarity of the glandular tissue distributions and correlation between both images increase in denser breasts. Furthermore, the synthetic images show continuity with respect to large structures in the density maps.


Asunto(s)
Mama/diagnóstico por imagen , Mama/fisiología , Mamografía/métodos , Imagen Multimodal/métodos , Adulto , Anciano , Algoritmos , Fenómenos Biomecánicos/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad
20.
Med Phys ; 45(1): e6-e31, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29148579

RESUMEN

Breast magnetic resonance imaging (MRI) and x-ray mammography are two image modalities widely used for the early detection and diagnosis of breast diseases in women. The combination of these modalities leads to a more accurate diagnosis and treatment of breast diseases. The aim of this paper is to review the registration between breast MRI and x-ray mammographic images using patient-specific finite element-based biomechanical models. Specifically, a biomechanical model is obtained from the patient's MRI volume and is subsequently used to mimic the mammographic acquisition. Due to the different patient positioning and movement restrictions applied in each image modality, the finite element analysis provides a realistic physics-based approach to perform the breast deformation. In contrast with other reviews, we do not only expose the overall process of compression and registration but we also include main ideas, describe challenges, and provide an overview of the used software in each step of the process. Extracting an accurate description from the MR images and preserving the stability during the finite element analysis require an accurate knowledge about the algorithms used, as well as the software and underlying physics. The wide perspective offered makes the paper suitable not only for expert researchers but also for graduate students and clinicians. We also include several medical applications in the paper, with the aim to fill the gap between the engineering and clinical performance.


Asunto(s)
Mama/diagnóstico por imagen , Análisis de Elementos Finitos , Imagen por Resonancia Magnética , Mamografía , Modelación Específica para el Paciente , Humanos , Imagenología Tridimensional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA