Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Cancer Res ; 19(11): 1840-1853, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34312290

RESUMEN

Lymphangioleiomyomatosis (LAM) is a rare, low-grade metastasizing disease characterized by cystic lung destruction. LAM can exhibit extensive heterogeneity at the molecular, cellular, and tissue levels. However, the molecular similarities and differences among LAM cells and tissue, and their connection to cancer features are not fully understood. By integrating complementary gene and protein LAM signatures, and single-cell and bulk tissue transcriptome profiles, we show sources of disease heterogeneity, and how they correspond to cancer molecular portraits. Subsets of LAM diseased cells differ with respect to gene expression profiles related to hormones, metabolism, proliferation, and stemness. Phenotypic diseased cell differences are identified by evaluating lumican (LUM) proteoglycan and YB1 transcription factor expression in LAM lung lesions. The RUNX1 and IRF1 transcription factors are predicted to regulate LAM cell signatures, and both regulators are expressed in LAM lung lesions, with differences between spindle-like and epithelioid LAM cells. The cancer single-cell transcriptome profiles most similar to those of LAM cells include a breast cancer mesenchymal cell model and lines derived from pleural mesotheliomas. Heterogeneity is also found in LAM lung tissue, where it is mainly determined by immune system factors. Variable expression of the multifunctional innate immunity protein LCN2 is linked to disease heterogeneity. This protein is found to be more abundant in blood plasma from LAM patients than from healthy women. IMPLICATIONS: This study identifies LAM molecular and cellular features, master regulators, cancer similarities, and potential causes of disease heterogeneity.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Linfangioleiomiomatosis/genética , Transcriptoma/genética , Femenino , Humanos
2.
Nat Commun ; 11(1): 619, 2020 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-32001681

RESUMEN

The clinical diagnosis of vascular dementia (VaD) is based on imaging criteria, and specific biochemical markers are not available. Here, we investigated the potential of cerebrospinal fluid (CSF) lipocalin 2 (LCN2), a secreted glycoprotein that has been suggested as mediating neuronal damage in vascular brain injuries. The study included four independent cohorts with a total n = 472 samples. LCN2 was significantly elevated in VaD compared to controls, Alzheimer's disease (AD), other neurodegenerative dementias, and cognitively unimpaired patients with cerebrovascular disease. LCN2 discriminated VaD from AD without coexisting VaD with high accuracy. The main findings were consistent over all cohorts. Neuropathology disclosed a high percentage of macrophages linked to subacute infarcts, reactive astrocytes, and damaged blood vessels in multi-infarct dementia when compared to AD. We conclude that CSF LCN2 is a promising candidate biochemical marker in the differential diagnosis of VaD and neurodegenerative dementias.


Asunto(s)
Enfermedad de Alzheimer/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Trastornos Cerebrovasculares/diagnóstico , Demencia Vascular/diagnóstico , Lipocalina 2/líquido cefalorraquídeo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/diagnóstico , Diagnóstico Diferencial , Femenino , Humanos , Masculino , Persona de Mediana Edad
3.
J Neuroimmune Pharmacol ; 13(1): 6-23, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28776122

RESUMEN

Remyelination occurs in demyelinated lesions in multiple sclerosis (MS) and pharmacological treatments that enhance this process will critically impact the long term functional outcome in the disease. Sildenafil, a cyclic GMP (cGMP)-specific phosphodiesterase 5 inhibitor (PDE5-I), is an oral vasodilator drug extensively used in humans for treatment of erectile dysfunction and pulmonary arterial hypertension. PDE5 is expressed in central nervous system (CNS) neuronal and glial populations and in endothelial cells and numerous studies in rodent models of neurological disease have evidenced the neuroprotective potential of PDE5-Is. Using myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) as a MS model, we previously showed that daily administration of sildenafil starting at peak disease rapidly ameliorates clinical symptoms while administration at symptoms onset prevents disease progression. These beneficial effects of the drug involved down-regulation of adaptive and innate immune responses, protection of axons and oligodendrocytes (OLs) and promotion of remyelination. In this work we have investigated mechanisms involved in the remyelinating effect of sildenafil. Using demyelinated organotypic cerebellar slice cultures we demonstrate that sildenafil stimulates remyelination by direct effects on CNS cells in a nitric oxide (NO)-cGMP-protein kinase G (PKG)-dependent manner. We also show that sildenafil treatment enhances OL maturation and induces expression of the promyelinating factor ciliary neurotrophic factor (CNTF) in spinal cord of EAE mice and in cerebellar slice cultures. Furthermore, we demonstrate that sildenafil promotes a M2 phenotype in bone marrow derived macrophages (BMDM) and increases myelin phagocytosis in these cells and in M2 microglia/macrophages in the spinal cord of EAE mice. Taken together these data indicate that promotion of OL maturation directly or through induction of growth factor expression, regulation of microglia/macrophage inflammatory phenotype and clearance of myelin debris may be relevant mechanisms involved in sildenafil enhancement of remyelination in demyelinated tissue and further support the contention that this well tolerated drug could be useful for ameliorating MS pathology.


Asunto(s)
Encefalomielitis Autoinmune Experimental/patología , Oligodendroglía/efectos de los fármacos , Inhibidores de Fosfodiesterasa 5/farmacología , Remielinización/efectos de los fármacos , Citrato de Sildenafil/farmacología , Animales , Células de la Médula Ósea/efectos de los fármacos , Cerebelo/efectos de los fármacos , Cerebelo/patología , Femenino , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Médula Espinal/efectos de los fármacos , Médula Espinal/patología
4.
Mol Neurodegener ; 12(1): 83, 2017 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-29126445

RESUMEN

BACKGROUND: YKL-40 (also known as Chitinase 3-like 1) is a glycoprotein produced by inflammatory, cancer and stem cells. Its physiological role is not completely understood but YKL-40 is elevated in the brain and cerebrospinal fluid (CSF) in several neurological and neurodegenerative diseases associated with inflammatory processes. Yet the precise characterization of YKL-40 in dementia cases is missing. METHODS: In the present study, we comparatively analysed YKL-40 levels in the brain and CSF samples from neurodegenerative dementias of different aetiologies characterized by the presence of cortical pathology and disease-specific neuroinflammatory signatures. RESULTS: YKL-40 was normally expressed in fibrillar astrocytes in the white matter. Additionally YKL-40 was highly and widely expressed in reactive protoplasmic cortical and perivascular astrocytes, and fibrillar astrocytes in sporadic Creutzfeldt-Jakob disease (sCJD). Elevated YKL-40 levels were also detected in Alzheimer's disease (AD) but not in dementia with Lewy bodies (DLB). In AD, YKL-40-positive astrocytes were commonly found in clusters, often around ß-amyloid plaques, and surrounding vessels with ß-amyloid angiopathy; they were also distributed randomly in the cerebral cortex and white matter. YKL-40 overexpression appeared as a pre-clinical event as demonstrated in experimental models of prion diseases and AD pathology. CSF YKL-40 levels were measured in a cohort of 288 individuals, including neurological controls (NC) and patients diagnosed with different types of dementia. Compared to NC, increased YKL-40 levels were detected in sCJD (p < 0.001, AUC = 0.92) and AD (p < 0.001, AUC = 0.77) but not in vascular dementia (VaD) (p > 0.05, AUC = 0.71) or in DLB/Parkinson's disease dementia (PDD) (p > 0.05, AUC = 0.70). Further, two independent patient cohorts were used to validate the increased CSF YKL-40 levels in sCJD. Additionally, increased YKL-40 levels were found in genetic prion diseases associated with the PRNP-D178N (Fatal Familial Insomnia) and PRNP-E200K mutations. CONCLUSIONS: Our results unequivocally demonstrate that in neurodegenerative dementias, YKL-40 is a disease-specific marker of neuroinflammation showing its highest levels in prion diseases. Therefore, YKL-40 quantification might have a potential for application in the evaluation of therapeutic intervention in dementias with a neuroinflammatory component.


Asunto(s)
Proteína 1 Similar a Quitinasa-3/biosíntesis , Demencia/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Anciano , Animales , Biomarcadores/análisis , Encéfalo/metabolismo , Líquido Cefalorraquídeo/metabolismo , Proteína 1 Similar a Quitinasa-3/análisis , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA