Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros











Intervalo de año de publicación
1.
FEBS Lett ; 505(3): 353-6, 2001 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-11576527

RESUMEN

The isolated rotor cylinder of the ATP synthase from Ilyobacter tartaricus was reconstituted into two-dimensional crystalline arrays. Atomic force microscopy imaging indicated a central cavity on one side of the rotor and a central plug protruding from the other side. Upon incubation with phospholipase C, the plug disappeared, but the appearance of the surrounding c subunit oligomer was not affected. This indicates that the plug consists of phospholipids. As the detergent-purified c cylinder is completely devoid of phospholipids, these are incorporated into the central hole from one side of the cylinder during the reconstitution procedure.


Asunto(s)
Fusobacterium/enzimología , Fosfolípidos/química , ATPasas de Translocación de Protón/química , Microscopía de Fuerza Atómica
2.
J Bacteriol ; 183(18): 5248-56, 2001 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-11514506

RESUMEN

Klebsiella pneumoniae is able to grow anaerobically with citrate as a sole carbon and energy source by a fermentative pathway involving the Na(+)-dependent citrate carrier CitS, citrate lyase, and oxaloacetate decarboxylase. The corresponding genes are organized in the divergent citC and citS operons, whose expression is strictly dependent on the citrate-sensing CitA-CitB two-component system. Evidence is provided here that the citrate fermentation genes are subject to catabolite repression, since anaerobic cultivation with a mixture of citrate and glucose or citrate and gluconate resulted in diauxic growth. Glucose, gluconate, and also glycerol decreased the expression of a chromosomal citS-lacZ fusion by 60 to 75%, whereas a direct inhibition of the citrate fermentation enzymes was not observed. The purified cyclic AMP (cAMP) receptor protein (CRP) of K. pneumoniae bound to two sites in the citC-citS intergenic region, which were centered at position -41.5 upstream of the citC and citS transcriptional start sites. Binding was apparently stimulated by the response regulator CitB. These data indicate that catabolite repression of the citrate fermentation genes is exerted by CRP and that in the absence of repressing carbon sources the cAMP-CRP complex serves to enhance the basal, CitB-dependent transcription level.


Asunto(s)
Proteínas Bacterianas/genética , Ácido Cítrico/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Klebsiella pneumoniae/metabolismo , Anaerobiosis , Proteínas Bacterianas/metabolismo , Secuencia de Bases , AMP Cíclico/metabolismo , Proteína Receptora de AMP Cíclico/genética , Fermentación , Gluconatos/metabolismo , Glucosa/metabolismo , Glicerol/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/crecimiento & desarrollo , Datos de Secuencia Molecular , Transcripción Genética
3.
EMBO Rep ; 2(3): 229-33, 2001 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11266365

RESUMEN

Synthesis of adenosine triphosphate (ATP) by the F(1)F(0) ATP synthase involves a membrane-embedded rotary engine, the F(0) domain, which drives the extra-membranous catalytic F(1) domain. The F(0) domain consists of subunits a(1)b(2) and a cylindrical rotor assembled from 9-14 alpha-helical hairpin-shaped c-subunits. According to structural analyses, rotors contain 10 c-subunits in yeast and 14 in chloroplast ATP synthases. We determined the rotor stoichiometry of Ilyobacter tartaricus ATP synthase by atomic force microscopy and cryo-electron microscopy, and show the cylindrical sodium-driven rotor to comprise 11 c-subunits.


Asunto(s)
ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/ultraestructura , Bacterias Anaerobias/enzimología , Microscopía por Crioelectrón , Cristalización , Microscopía de Fuerza Atómica , Estructura Terciaria de Proteína , Subunidades de Proteína , ATPasas de Translocación de Protón/metabolismo , Rotación
4.
FEBS Lett ; 483(2-3): 165-8, 2000 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-11042274

RESUMEN

The gamma-subunit of citrate lyase (EC 4.1.3.6) contains the prosthetic group 2'-(5"-phosphoribosyl)-3'-dephospho-CoA and serves as an acyl carrier protein (ACP). We recently showed that in Escherichia coli the proteins CitG and CitX are essential for holo-ACP synthesis and provided evidence that CitG catalyzes the formation of a prosthetic group precursor from ATP and dephospho-CoA, which is subsequently attached via phosphodiester linkage to apo-ACP by CitX. Here we prove that CitG indeed catalyzes the conversion of ATP and dephospho-CoA to adenine and 2'-(5"-triphosphoribosyl)-3'-dephospho-CoA, the predicted precursor of the prosthetic group. Furthermore, this precursor was transferred by CitX to apo-ACP, yielding holo-ACP. Thus, our proposed mechanism for holo-ACP synthesis could be verified.


Asunto(s)
ATP Citrato (pro-S)-Liasa/metabolismo , Coenzima A/metabolismo , ATP Citrato (pro-S)-Liasa/química , Proteína Transportadora de Acilo/metabolismo , Adenosina Trifosfato/metabolismo , Apoenzimas/metabolismo , Cromatografía Líquida de Alta Presión , Electroforesis en Gel de Poliacrilamida , Precursores Enzimáticos/metabolismo , Escherichia coli/enzimología , Holoenzimas/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
5.
Biochemistry ; 39(43): 13223-32, 2000 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-11052675

RESUMEN

Malonate decarboxylase from Klebsiella pneumoniae consists of four subunits MdcA, D, E, and C and catalyzes the cleavage of malonate to acetate and CO(2). The smallest subunit MdcC is an acyl carrier protein to which acetyl and malonyl thioester residues are bound via a 2'-(5' '-phosphoribosyl)-3'-dephospho-CoA prosthetic group and turn over during the catalytic mechanism. We report here on the biosynthesis of holo acyl carrier protein from the unmodified apoprotein. The prosthetic group biosynthesis starts with the MdcB-catalyzed condensation of dephospho-CoA with ATP to 2'-(5' '-triphosphoribosyl)-3'-dephospho-CoA. In this reaction, a new alpha (1' ' --> 2') glycosidic bond between the two ribosyl moieties is formed, and thereby, the adenine moiety of ATP is displaced. MdcB therefore is an ATP:dephospho-CoA 5'-triphosphoribosyl transferase. The second protein involved in holo ACP synthesis is MdcG. This enzyme forms a strong complex with the 2'-(5' '-triphosphoribosyl)-3'-dephospho-CoA prosthetic group precursor. This complex, called MdcG(i), is readily separated from free MdcG by native polyacrylamide gel electrophoresis. Upon incubation of MdcG(i) with apo acyl carrier protein, holo acyl carrier protein is synthesized by forming the phosphodiester bond between the 2'-(5' '-phosphoribosyl)-3'-dephospho-CoA prosthetic group and serine 25 of the protein. MdcG corresponds to a 2'-(5' '-triphosphoribosyl)-3'-dephospho-CoA:apo ACP 2'-(5' '-phosphoribosyl)-3'-dephospho-CoA transferase. In absence of the prosthetic group precursor, MdcG catalyzes at a low rate the adenylylation of apo acyl carrier protein using ATP as substrate. The adenylyl ACP thus formed is an unphysiological side product and is not involved in the biosynthesis of holo ACP. The 2'-(5' '-triphosphoribosyl)-3'-dephospho-CoA precursor of the prosthetic group has been purified and its identity confirmed by mass spectrometry and enzymatic analysis.


Asunto(s)
Proteína Transportadora de Acilo/metabolismo , Carboxiliasas/metabolismo , Precursores Enzimáticos/biosíntesis , Malonil Coenzima A/metabolismo , Proteína Transportadora de Acilo/biosíntesis , S-Maloniltransferasa de la Proteína Transportadora de Grupos Acilo , Aciltransferasas/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carboxiliasas/genética , Coenzima A/metabolismo , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Regulación Bacteriana de la Expresión Génica , Holoenzimas/metabolismo , Klebsiella pneumoniae/enzimología , Klebsiella pneumoniae/genética , Familia de Multigenes
6.
Biochemistry ; 39(43): 13233-40, 2000 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-11052676

RESUMEN

Malonate decarboxylase from Klebsiella pneumoniae contains an acyl carrier protein (MdcC) to which a 2'-(5' '-phosphoribosyl)-3'-dephospho-CoA prosthetic group is attached via phosphodiester linkage to serine 25. We have shown in the preceding paper in this issue that the formation of this phosphodiester bond is catalyzed by a phosphoribosyl-dephospho-coenzyme A transferase MdcG with the substrate 2'-(5' '-triphosphoribosyl)-3'-dephospho-CoA that is synthesized from ATP and dephospho-coenzyme A by the triphosphoribosyl transferase MdcB. The reaction catalyzed by MdcG is related to nucleotidyltransfer reactions, and the enzyme indeed catalyzes unphysiological nucleotidyltransfer, e.g., adenylyltransfer from ATP to apo acyl carrier protein (ACP). These unspecific side reactions are favored at high Mg(2+) concentrations. A sequence motif including D134 and D136 of MdcG is a signature of all nucleotidyltransferases. It is known from the well-characterized mammalian DNA polymerase beta that this motif is at the active site of the enzyme. Site-directed mutagenesis of D134 and/or D136 of MdcG to alanine abolished the transfer of the prosthetic group to apo ACP, but the binding of triphosphoribosyl-dephospho-CoA to MdcG was not affected. Evidence is presented that similar to MdcG, MadK encoded by the malonate decarboxylase operon of Malonomonas rubra and CitX from the operon encoding citrate lyase in Escherichia coli are phosphoribosyl-dephospho-CoA transferases catalyzing the attachment of the phosphoribosyl-dephospho-CoA prosthetic group to their specific apo ACPs.


Asunto(s)
Coenzima A/metabolismo , Nucleotidiltransferasas/metabolismo , Proteína Transportadora de Acilo/biosíntesis , Proteína Transportadora de Acilo/metabolismo , S-Maloniltransferasa de la Proteína Transportadora de Grupos Acilo , Aciltransferasas/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Apoproteínas/biosíntesis , Sitios de Unión , Carboxiliasas/metabolismo , Catálisis , Deltaproteobacteria/enzimología , Deltaproteobacteria/genética , Escherichia coli/enzimología , Proteínas de Escherichia coli , Acido Graso Sintasa Tipo II , Klebsiella pneumoniae/enzimología , Magnesio/metabolismo , Datos de Secuencia Molecular , Complejos Multienzimáticos/metabolismo , Familia de Multigenes , Nucleotidiltransferasas/biosíntesis , Oxo-Ácido-Liasas/metabolismo , Homología de Secuencia de Aminoácido
7.
Biochim Biophys Acta ; 1459(2-3): 506-13, 2000 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-11004469

RESUMEN

The mechanism of converting an electrochemical gradient of protons or Na(+) ions across the membrane into rotational torque by the F(o) motor of the ATP synthase has been described by a two-channel model or by a one-channel model. Experimental evidence obtained with the F(o) motor from the Propionigenium modestum ATP synthase is described which is in accordance with the one-channel model, but not with the two-channel model. This evidence includes the ATP-dependent occlusion of one (22)Na(+) per ATP synthase with a mutated Na(+)-impermeable a subunit or the Na(+)(in)/(22)Na(+)(out) exchange which is not affected by modifying part of the c subunit sites with dicyclohexylcarbodiimide.


Asunto(s)
Proteínas de la Membrana/química , Proteínas Motoras Moleculares , ATPasas de Translocación de Protón/química , Adenosina Trifosfato/biosíntesis , Sitios de Unión , Cationes , Concentración de Iones de Hidrógeno , Potenciales de la Membrana , Modelos Químicos , Modelos Moleculares , Propionibacterium , Protones , Rotación , Sodio/química , Radioisótopos de Sodio
8.
Biochim Biophys Acta ; 1458(2-3): 374-86, 2000 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-10838052

RESUMEN

ATP, the universal carrier of cell energy is manufactured from ADP and phosphate by the enzyme ATP synthase using the energy stored in a transmembrane ion gradient. The two components of the ion gradient (DeltapH or DeltapNa(+)) and the electrical potential difference Deltapsi are thermodynamically but not kinetically equivalent. In contrast to accepted wisdom, the electrical component is kinetically indispensable not only for bacterial ATP synthases but also for that from chloroplasts. Recent biochemical studies with the Na(+)-translocating ATP synthase of Propionigenium modestum have given a good idea of the ion translocation pathway in the F(0) motor. Taken together with biophysical data, the operating principles of the motor have been delineated.


Asunto(s)
Proteínas de Transporte de Catión , Proteínas Motoras Moleculares/química , Propionibacterium/enzimología , ATPasas de Translocación de Protón/química , Complejos de ATP Sintetasa , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/química , Escherichia coli/enzimología , Potenciales de la Membrana , Modelos Moleculares , Complejos Multienzimáticos/química , Fosfotransferasas (Aceptor del Grupo Fosfato)/química , Proteínas Recombinantes de Fusión/metabolismo
9.
Biochemistry ; 39(15): 4320-6, 2000 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-10757980

RESUMEN

The membrane-bound beta-subunit of oxaloacetate decarboxylase from Klebsiella pneumoniae catalyzes the decarboxylation of carboxybiotin, which is coupled to Na(+) translocation and consumes a periplasmically derived proton. Upon site-directed mutagenesis of 20 polar and/or conserved residues within putative membrane-integral regions, the specific oxaloacetate decarboxylase activities were reduced to various extents, but only the enzyme with a Y229F mutation was completely inactive. We propose that Y229 is part of the network by which the proton of S382 is delivered to carboxybiotin, where it is consumed upon catalyzing the immediate decarboxylation of this acid-labile compound. Unlike S382 or D203, Y229 appears to be not involved in Na(+) binding, because in the Y229F orY229A mutants, the beta-subunit was protected from tryptic digestion by 50 mM NaCl like in the wild-type enzyme. Oxaloacetate decarboxylase with a betaC291E mutation was unstable in the absence of Na(+) and dissociated into an alpha-gamma subcomplex and the beta-subunit. The enzyme could only be isolated in the presence of 0. 5 M NaCl. These results are consistent with the notion that the beta-subunit changes its conformation upon Na(+) binding.


Asunto(s)
Carboxiliasas/química , Carboxiliasas/metabolismo , Klebsiella pneumoniae/enzimología , Mutación/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Tirosina/metabolismo , Sustitución de Aminoácidos/genética , Biotina/análogos & derivados , Biotina/metabolismo , Carboxiliasas/genética , Carboxiliasas/aislamiento & purificación , Catálisis , Secuencia Conservada/genética , Estabilidad de Enzimas , Escherichia coli , Concentración de Iones de Hidrógeno , Hidrólisis/efectos de los fármacos , Cinética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/aislamiento & purificación , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida/genética , Ácido Oxaloacético/metabolismo , Unión Proteica , Conformación Proteica/efectos de los fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Sodio/metabolismo , Sodio/farmacología , Tripsina/metabolismo , Tirosina/genética
10.
Biochemistry ; 39(9): 2307-15, 2000 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-10694397

RESUMEN

The oxaloacetate decarboxylase Na+ pump consists of subunits alpha, beta, and gamma, and contains biotin as the prosthetic group. Membrane-bound subunit beta catalyzes the decarboxylation of carboxybiotin coupled to Na+ translocation, and consumes a periplasmically derived proton. Site-directed mutagenesis of conserved amino acids of transmembrane helix VIII indicated that residues N373, G377, S382, and R389 are functionally important. The polar side groups of these amino acids may constitute together with D203 a network of ionizable groups which promotes the translocation of Na+ and the oppositely oriented H+ across the membrane. Evidence is presented that two Na+ ions are bound simultaneously to subunit beta during transport with D203 and S382 acting as binding sites. Sodium ion binding from the cytoplasm to both sites elicits decarboxylation of carboxybiotin, and a conformational switch exposes the bound Na+ ions toward the periplasm. After dissociation of Na+ and binding of H+, the cytoplasmically exposed conformation is regained.


Asunto(s)
Carboxiliasas/química , Carboxiliasas/genética , ATPasa Intercambiadora de Sodio-Potasio/química , ATPasa Intercambiadora de Sodio-Potasio/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Sitios de Unión/genética , Biotina/análogos & derivados , Biotina/genética , Biotina/metabolismo , Carboxiliasas/antagonistas & inhibidores , Carboxiliasas/metabolismo , Análisis Mutacional de ADN , Activación Enzimática/genética , Escherichia coli/enzimología , Escherichia coli/genética , Vectores Genéticos/síntesis química , Concentración de Iones de Hidrógeno , Hidrólisis , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Sodio/metabolismo , Tripsina/química
11.
J Bioenerg Biomembr ; 32(5): 449-58, 2000 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15254380

RESUMEN

In Propionigenium modestum, ATP is manufactured from ADP and phosphate by the enzyme ATP synthase using the free energy of an electrochemical gradient of Na+ ions. The P. modestum ATP synthase is a clear member of the family of F-type ATP synthases and the only major distinction is an extension of the coupling ion specificity to H+, Li+, or Na+, depending on the conditions. The use of Na+ as a coupling ion offers unique experimental options to decipher the ion-translocation mechanism and the osmotic and mechanical behavior of the enzyme. The single a subunit and the oligomer of c subunits are part of the stator and rotor, respectively, and operate together in the ion-translocation mechanism. During ATP synthesis, Na+ diffuses from the periplasm through the a subunit channel onto the Na+ binding site on a c subunit. From there it dissociates into the cytoplasm after the site has rotated out of the interface with subunit a. In the absence of a membrane potential, the rotor performs Brownian motions into either direction and Na+ ions are exchanged between the two compartments separated by the membrane. Upon applying voltage, however, the direction of Na+ flux and of rotation is biased by the potential. The motor generates torque to drive the rotation of the gamma subunit, thereby releasing tightly bound ATP from catalytic sites in F(1). Hence, the membrane potential plays a pivotal role in the torque-generating mechanism. This is corroborated by the fact that for ATP synthesis, at physiological rates, the membrane potential is indispensable. We propose a catalytic mechanism for torque generation by the F(o) motor that is in accord with all experimental data and is in quantitative agreement with the requirement for ATP synthesis.


Asunto(s)
ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Propionigenium/enzimología , Adenosina Trifosfato/biosíntesis , Fenómenos Biomecánicos , Transporte Iónico , Potenciales de la Membrana , Modelos Moleculares , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/metabolismo , Ósmosis , Estructura Cuaternaria de Proteína , Subunidades de Proteína , Sodio/metabolismo
12.
J Exp Biol ; 203(Pt 1): 51-9, 2000 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-10600673

RESUMEN

ATP, the universal carrier of cell energy, is manufactured from ADP and phosphate by the enzyme ATP synthase using the free energy of an electrochemical gradient of protons (or Na(+)). The proton-motive force consists of two components, the transmembrane proton concentration gradient (delta pH) and the membrane potential. The two components were considered to be not only thermodynamically but also kinetically equivalent, since the chloroplast ATP synthase appeared to operate on delta pH only. Recent experiments demonstrate, however, that the chloroplast ATP synthase, like those of mitochondria and bacteria, requires a membrane potential for ATP synthesis. Hence, the membrane potential and proton gradient are not equivalent under normal operating conditions far from equilibrium. These conclusions are corroborated by the finding that only the membrane potential induces a rotary torque that drives the counter-rotation of the a and c subunits in the F(o) motor of Propionigenium modestum ATP synthase.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Potenciales de la Membrana , ATPasas de Translocación de Protón/metabolismo , Bacterias/enzimología , Concentración de Iones de Hidrógeno , Estructura Molecular , Fuerza Protón-Motriz , ATPasas de Translocación de Protón/química , Sodio/metabolismo
13.
Biochemistry ; 38(41): 13461-72, 1999 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-10521253

RESUMEN

The topology of the beta-subunit of the oxaloacetate Na+ pump (OadB) was probed with the alkaline phosphatase (PhoA) and beta-galactosidase (lacZ) fusion technique. Additional evidence for the topology was derived from amino acid alignments and comparative hydropathy profiles of OadB with related proteins. Consistent results were obtained for the three N-terminal and the six C-terminal membrane-spanning alpha-helices. However, the two additional helices that were predicted by hydropathy analyses between the N-terminal and C-terminal blocks did not conform with the fusion results. The analyses were therefore extended by probing the sideness of various engineered cysteine residues with the membrane-impermeant reagent 4-acetamido-4'-maleimidylstilbene-2, 2'-disulfonate. The results were in accord with those of the fusion analyses, suggesting that the protein folds within the membrane by a block of three N-terminal transmembrane segments and another one with six C-terminal transmembrane segments. The mainly hydrophobic connecting segment is predicted not to traverse the membrane fully, but to insert in an undefined manner from the periplasmic face. According to our model, the N-terminus is at the cytoplasmic face and the C-terminus is at the periplasmic face of the membrane.


Asunto(s)
Carboxiliasas/química , Klebsiella pneumoniae/enzimología , Proteínas de la Membrana/química , Sodio/metabolismo , Fosfatasa Alcalina/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Transporte Biológico Activo , Carboxiliasas/genética , Carboxiliasas/metabolismo , Membrana Celular/enzimología , Quinasas Ciclina-Dependientes/genética , Cisteína/genética , Estabilidad de Enzimas/genética , Genes Bacterianos , Klebsiella pneumoniae/genética , Operón Lac , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Estilbenos/química , Ácidos Sulfónicos/química , beta-Galactosidasa/metabolismo
14.
EMBO J ; 18(15): 4118-27, 1999 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-10428951

RESUMEN

ATP synthase is the universal enzyme that manufactures cellular ATP using the energy stored in a transmembrane ion gradient. This energy gradient has two components: the concentration difference (DeltapH or DeltapNa(+)) and the electrical potential difference DeltaPsi, which are thermodynamically equivalent. However, they are not kinetically equivalent, as the mitochondrial and bacterial ATP synthases require a transmembrane potential, DeltaPsi, but the chloroplast enzyme has appeared to operate on DeltapH alone. Here we show that, contrary to the accepted wisdom, the 'acid bath' procedure used to study the chloroplast enzyme develops not only a DeltapH but also a membrane potential, and that this potential is essential for ATP synthesis. Thus, for the chloroplast and other ATP synthases, the membrane potential is the fundamental driving force for their normal operation. We discuss the biochemical reasons for this phenomenon and a model that is consistent with these new experimental facts.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Potenciales de la Membrana , ATPasas de Translocación de Protón/metabolismo , Ácidos Carboxílicos/química , Permeabilidad de la Membrana Celular , Escherichia coli/genética , Concentración de Iones de Hidrógeno , Propionibacterium/enzimología
15.
Mol Microbiol ; 33(3): 590-8, 1999 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10417649

RESUMEN

Complex I is the site for electrons entering the respiratory chain and therefore of prime importance for the conservation of cell energy. It is generally accepted that the complex I-catalysed oxidation of NADH by ubiquinone is coupled specifically to proton translocation across the membrane. In variance to this view, we show here that complex I of Klebsiella pneumoniae operates as a primary Na+ pump. Membranes from Klebsiella pneumoniae catalysed Na+-stimulated electron transfer from NADH or deaminoNADH to ubiquinone-1 (0.1-0.2 micromol min-1 mg-1). Upon NADH or deaminoNADH oxidation, Na+ ions were transported into the lumen of inverted membrane vesicles. Rate and extent of Na+ transport were significantly enhanced by the uncoupler carbonylcyanide-m-chlorophenylhydrazone (CCCP) to values of approximately 0.2 micromol min-1 mg-1 protein. This characterizes the responsible enzyme as a primary Na+ pump. The uptake of sodium ions was severely inhibited by the complex I-specific inhibitor rotenone with deaminoNADH or NADH as substrate. N-terminal amino acid sequence analyses of the partially purified Na+-stimulated NADH:ubiquinone oxidoreductase from K. pneumoniae revealed that two polypeptides were highly similar to the NuoF and NuoG subunits from the H+-translocating NADH:ubiquinone oxidoreductases from enterobacteria.


Asunto(s)
Klebsiella pneumoniae/enzimología , NADH NADPH Oxidorreductasas/química , Sodio/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Transporte Biológico , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Detergentes , Dimetilaminas , Transporte de Electrón , Complejo I de Transporte de Electrón , Cinética , NAD/metabolismo , Fragmentos de Péptidos/química , Cloruro de Potasio/farmacología , Protones , Análisis de Secuencia , Cloruro de Sodio/farmacología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
16.
Proc Natl Acad Sci U S A ; 96(9): 4924-9, 1999 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-10220395

RESUMEN

The F-ATPase of the bacterium Propionigenium modestum is driven by an electrochemical sodium gradient between the cell interior and its environment. Here we present a mechanochemical model for the transduction of transmembrane sodium-motive force into rotary torque. The same mechanism is likely to operate in other F-ATPases, including the proton-driven F-ATPases of Escherichia coli.


Asunto(s)
Bacterias Anaerobias Gramnegativas/enzimología , Proteínas Motoras Moleculares , ATPasas de Translocación de Protón/química , Proteínas Bacterianas/química , Transferencia de Energía , Escherichia coli/química , Conformación Proteica
17.
Eur J Biochem ; 261(2): 459-67, 1999 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10215857

RESUMEN

The structure of the Na+, Li+ or H+-binding c subunit of the ATP synthase from Propionigenium modestum was studied by NMR. Subunit c in dodecylsulphate micelles consists of four alpha-helical segments, I-IV, that are connected by short linker peptides with non-regular secondary structures. We propose that helices I (V4-I26) and IV (I69-V85) are membrane-spanning structures, and that helices II and III and the intervening hydrophilic loop are located in the cytoplasm. The Na+-binding residues Q32, E65 and S66 are located in the I-->II and III-->IV helix connections, probably near the membrane surface on the cytoplasmic side.


Asunto(s)
Bacterias/enzimología , ATPasas de Translocación de Protón/química , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Sitios de Unión , Espectroscopía de Resonancia Magnética , Proteínas de la Membrana/química , Micelas , Modelos Moleculares , Datos de Secuencia Molecular , Tamaño de la Partícula , Conformación Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Dodecil Sulfato de Sodio/farmacología
18.
EMBO J ; 17(20): 5887-95, 1998 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-9774333

RESUMEN

The mechanism by which ion-flux through the membrane-bound motor module (F0) induces rotational torque, driving the rotation of the gamma subunit, was probed with a Na+-translocating hybrid ATP synthase. The ATP-dependent occlusion of 1 (22)Na+ per ATP synthase persisted after modification of the c subunit ring with dicyclohexylcarbodiimide (DCCD), when 22Na+ was added first and ATP second, but not if the order of addition was reversed. These results support the model of ATP-driven rotation of the c subunit oligomer (rotor) versus subunit a (stator) that stops when either a 22Na+-loaded or a DCCD-modified rotor subunit reaches the Na+-impermeable stator. The ATP synthase with a Na+-permeable stator catalyzed 22Na+out/Na+in-exchange after reconstitution into proteoliposomes, which was not significantly affected by DCCD modification of the c subunit oligomer, but was abolished by the additional presence of ATP or by a membrane potential (DeltaPsi) of 90 mV. We propose that in the idling mode of the motor, Na+ ions are shuttled across the membrane by limited back and forth movements of the rotor against the stator. This motional flexibility is arrested if either ATP or DeltaPsi induces the switch from idling into a directed rotation. The Propionigenium modestum ATP synthase catalyzed ATP formation with DeltaPsi of 60-125 mV but not with DeltapNa+ of 195 mV. These results demonstrate that electric forces are essential for ATP synthesis and lead to a new concept of rotary-torque generation in the ATP synthase motor.


Asunto(s)
ATPasas de Translocación de Protón/metabolismo , Adenosina Trifosfato/biosíntesis , Diciclohexilcarbodiimida/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Bacterias Anaerobias Gramnegativas/enzimología , Bacterias Anaerobias Gramnegativas/genética , Liposomas/química , Liposomas/metabolismo , Modelos Biológicos , Mutagénesis Sitio-Dirigida , ATPasas de Translocación de Protón/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Sodio/metabolismo , Radioisótopos de Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Torque
19.
FEBS Lett ; 434(1-2): 57-60, 1998 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-9738451

RESUMEN

The H+-translocating F1Fo ATP synthase of Escherichia coli was purified and reconstituted into proteoliposomes. This system catalyzed ATP synthesis when energized by an acid/base transition (pHin = 5.0; pHout = 8.3) with succinate, malonate or maleinate but not with MES as the acidic buffer. Under these experimental conditions an electric potential of 125-130 mV is generated by the diffusion of succinate, probably the monoanionic species, whereas with MES buffer the measured potential was at background level (approximately 5 mV). ATP was also synthesized at pH 7.2 in the absence of a delta pH by applying a K+/valinomycin diffusion potential. The rate of ATP synthesis increased with the potential in an exponential manner with an inflection point at about 70 mV. We conclude from these results that delta pH and delta psi are kinetically unequivalent driving forces for ATP synthesis by the E. coli ATP synthase and that delta psi is a mandatory force for this synthesis. The significance of these findings for the mechanism of ATP synthesis in general is discussed.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Escherichia coli/fisiología , ATPasas de Translocación de Protón/fisiología , Proteínas Bacterianas/fisiología , Electricidad Estática
20.
J Bacteriol ; 180(16): 4160-5, 1998 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-9696764

RESUMEN

Under anoxic conditions in the presence of an oxidizable cosubstrate such as glucose or glycerol, Escherichia coli converts citrate to acetate and succinate. Two enzymes are specifically required for the fermentation of the tricarboxylic acid, i.e., a citrate uptake system and citrate lyase. Here we report that the open reading frame (designated citT) located at 13.90 min on the E. coli chromosome between rna and the citrate lyase genes encodes a citrate carrier. E. coli transformed with a plasmid expressing citT was capable of aerobic growth on citrate, which provides convincing evidence for a function of CitT as a citrate carrier. Transport studies with cell suspensions of the transformed strain indicated that CitT catalyzes a homologous exchange of citrate or a heterologous exchange against succinate, fumarate, or tartrate. Since succinate is the end product of citrate fermentation in E. coli, it is likely that CitT functions in vivo as a citrate/succinate antiporter. Analysis of the primary sequence showed that CitT (487 amino acids, 53.1 kDa) is a highly hydrophobic protein with 12 putative transmembrane helices. Sequence comparisons revealed that CitT is related to the 2-oxoglutarate/malate translocator (SODiT1 gene product) from spinach chloroplasts and five bacterial gene products, none of which has yet been functionally characterized. It is suggested that the E. coli CitT protein is a member of a novel family of eubacterial transporters involved in the transport of di- and tricarboxylic acids.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Ácido Cítrico/metabolismo , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Transportadores de Anión Orgánico , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Transporte Biológico , Carbono/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/genética , Cloroplastos/química , Metabolismo Energético , Escherichia coli/genética , Proteínas Mitocondriales , Datos de Secuencia Molecular , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Spinacia oleracea/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA