Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nat Commun ; 15(1): 7148, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169028

RESUMEN

We leverage machine learning approaches to adapt nanopore sequencing basecallers for nucleotide modification detection. We first apply the incremental learning (IL) technique to improve the basecalling of modification-rich sequences, which are usually of high biological interest. With sequence backbones resolved, we further run anomaly detection (AD) on individual nucleotides to determine their modification status. By this means, our pipeline promises the single-molecule, single-nucleotide, and sequence context-free detection of modifications. We benchmark the pipeline using control oligos, further apply it in the basecalling of densely-modified yeast tRNAs and E.coli genomic DNAs, the cross-species detection of N6-methyladenosine (m6A) in mammalian mRNAs, and the simultaneous detection of N1-methyladenosine (m1A) and m6A in human mRNAs. Our IL-AD workflow is available at: https://github.com/wangziyuan66/IL-AD .


Asunto(s)
Adenosina , Escherichia coli , Aprendizaje Automático , Secuenciación de Nanoporos , ARN Mensajero , ARN de Transferencia , Secuenciación de Nanoporos/métodos , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia/genética , Escherichia coli/genética , Saccharomyces cerevisiae/genética , Animales
3.
Cell Rep Methods ; 4(6): 100799, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38889686

RESUMEN

The cellular components of tumors and their microenvironment play pivotal roles in tumor progression, patient survival, and the response to cancer treatments. Unveiling a comprehensive cellular profile within bulk tumors via single-cell RNA sequencing (scRNA-seq) data is crucial, as it unveils intrinsic tumor cellular traits that elude identification through conventional cancer subtyping methods. Our contribution, scBeacon, is a tool that derives cell-type signatures by integrating and clustering multiple scRNA-seq datasets to extract signatures for deconvolving unrelated tumor datasets on bulk samples. Through the employment of scBeacon on the The Cancer Genome Atlas (TCGA) cohort, we find cellular and molecular attributes within specific tumor categories, many with patient outcome relevance. We developed a tumor cell-type map to visually depict the relationships among TCGA samples based on the cell-type inferences.


Asunto(s)
Neoplasias , Análisis de la Célula Individual , Microambiente Tumoral , Humanos , Microambiente Tumoral/genética , Análisis de la Célula Individual/métodos , Neoplasias/genética , Neoplasias/patología , Análisis de Secuencia de ARN , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Análisis por Conglomerados
4.
bioRxiv ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38798673

RESUMEN

Tumors frequently harbor isogenic yet epigenetically distinct subpopulations of multi-potent cells with high tumor-initiating potential-often called Cancer Stem-Like Cells (CSLCs). These can display preferential resistance to standard-of-care chemotherapy. Single-cell analyses can help elucidate Master Regulator (MR) proteins responsible for governing the transcriptional state of these cells, thus revealing complementary dependencies that may be leveraged via combination therapy. Interrogation of single-cell RNA sequencing profiles from seven metastatic breast cancer patients, using perturbational profiles of clinically relevant drugs, identified drugs predicted to invert the activity of MR proteins governing the transcriptional state of chemoresistant CSLCs, which were then validated by CROP-seq assays. The top drug, the anthelmintic albendazole, depleted this subpopulation in vivo without noticeable cytotoxicity. Moreover, sequential cycles of albendazole and paclitaxel-a commonly used chemotherapeutic -displayed significant synergy in a patient-derived xenograft (PDX) from a TNBC patient, suggesting that network-based approaches can help develop mechanism-based combinatorial therapies targeting complementary subpopulations.

5.
Hypertension ; 80(11): 2357-2371, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37737027

RESUMEN

BACKGROUND: Rare genetic variants and genetic variation at loci in an enhancer in SOX17 (SRY-box transcription factor 17) are identified in patients with idiopathic pulmonary arterial hypertension (PAH) and PAH with congenital heart disease. However, the exact role of genetic variants or mutations in SOX17 in PAH pathogenesis has not been reported. METHODS: SOX17 expression was evaluated in the lungs and pulmonary endothelial cells (ECs) of patients with idiopathic PAH. Mice with Tie2Cre-mediated Sox17 knockdown and EC-specific Sox17 deletion were generated to determine the role of SOX17 deficiency in the pathogenesis of PAH. Human pulmonary ECs were cultured to understand the role of SOX17 deficiency. Single-cell RNA sequencing, RNA-sequencing analysis, and luciferase assay were performed to understand the underlying molecular mechanisms of SOX17 deficiency-induced PAH. E2F1 (E2F transcription factor 1) inhibitor HLM006474 was used in EC-specific Sox17 mice. RESULTS: SOX17 expression was downregulated in the lung and pulmonary ECs from patients with idiopathic PAH. Mice with Tie2Cre-mediated Sox17 knockdown and EC-specific Sox17 deletion induced spontaneously mild pulmonary hypertension. Loss of endothelial Sox17 in EC exacerbated hypoxia-induced pulmonary hypertension in mice. Loss of SOX17 in lung ECs induced endothelial dysfunctions including upregulation of cell cycle programming, proliferative and antiapoptotic phenotypes, augmentation of paracrine effect on pulmonary arterial smooth muscle cells, impaired cellular junction, and BMP (bone morphogenetic protein) signaling. E2F1 signaling was shown to mediate the SOX17 deficiency-induced EC dysfunction. Pharmacological inhibition of E2F1 in Sox17 EC-deficient mice attenuated pulmonary hypertension development. CONCLUSIONS: Our study demonstrated that endothelial SOX17 deficiency induces pulmonary hypertension through E2F1. Thus, targeting E2F1 signaling represents a promising approach in patients with PAH.


Asunto(s)
Hipertensión Pulmonar , Humanos , Ratones , Animales , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Células Endoteliales/metabolismo , Pulmón/metabolismo , Hipertensión Pulmonar Primaria Familiar/metabolismo , Arteria Pulmonar/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo , Factores de Transcripción SOXF/farmacología , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo
6.
Nat Commun ; 14(1): 558, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732513

RESUMEN

Type 2 diabetes (T2D) is associated with ß-cell dedifferentiation. Aldehyde dehydrogenase 1 isoform A3 (ALHD1A3) is a marker of ß-cell dedifferentiation and correlates with T2D progression. However, it is unknown whether ALDH1A3 activity contributes to ß-cell failure, and whether the decrease of ALDH1A3-positive ß-cells (A+) following pair-feeding of diabetic animals is due to ß-cell restoration. To tackle these questions, we (i) investigated the fate of A+ cells during pair-feeding by lineage-tracing, (ii) somatically ablated ALDH1A3 in diabetic ß-cells, and (iii) used a novel selective ALDH1A3 inhibitor to treat diabetes. Lineage tracing and functional characterization show that A+ cells can be reconverted to functional, mature ß-cells. Genetic or pharmacological inhibition of ALDH1A3 in diabetic mice lowers glycemia and increases insulin secretion. Characterization of ß-cells following ALDH1A3 inhibition shows reactivation of differentiation as well as regeneration pathways. We conclude that ALDH1A3 inhibition offers a therapeutic strategy against ß-cell dysfunction in diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animales , Ratones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/genética , Línea Celular Tumoral , Células Secretoras de Insulina/metabolismo , Familia de Aldehído Deshidrogenasa 1 , Aldehído Oxidorreductasas/metabolismo
7.
Elife ; 112022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36178196

RESUMEN

Basal cells are multipotent stem cells of a variety of organs, including the respiratory tract, where they are major components of the airway epithelium. However, it remains unclear how diverse basal cells are and how distinct subpopulations respond to airway challenges. Using single cell RNA-sequencing and functional approaches, we report a significant and previously underappreciated degree of heterogeneity in the basal cell pool, leading to identification of six subpopulations in the adult murine trachea. Among these, we found two major subpopulations, collectively comprising the most uncommitted of all the pools, but with distinct gene expression signatures. Notably, these occupy distinct ventral and dorsal tracheal niches and differ in their ability to self-renew and initiate a program of differentiation in response to environmental perturbations in primary cultures and in mouse injury models in vivo. We found that such heterogeneity is acquired prenatally, when the basal cell pool and local niches are still being established, and depends on the integrity of these niches, as supported by the altered basal cell phenotype of tracheal cartilage-deficient mouse mutants. Finally, we show that features that distinguish these progenitor subpopulations in murine airways are conserved in humans. Together, the data provide novel insights into the origin and impact of basal cell heterogeneity on the establishment of regionally distinct responses of the airway epithelium during injury-repair and in disease conditions.


Asunto(s)
Células Epiteliales , Mucosa Respiratoria , Humanos , Adulto , Ratones , Animales , Células Epiteliales/metabolismo , Diferenciación Celular/fisiología , Tráquea/metabolismo , ARN/metabolismo
8.
Cancer Discov ; 9(5): 605-616, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30877085

RESUMEN

Despite the important role of the PI3K/AKT/mTOR axis in the pathogenesis of cancer, to date there have been few functional oncogenic fusions identified involving the AKT genes. A 12-year-old female with a histopathologically indeterminate epithelioid neoplasm was found to harbor a novel fusion between the LAMTOR1 and AKT1 genes. Through expanded use access, she became the first pediatric patient to be treated with the oral ATP-competitive pan-AKT inhibitor ipatasertib. Treatment resulted in dramatic tumor regression, demonstrating through patient-driven discovery that the fusion resulted in activation of AKT1, was an oncogenic driver, and could be therapeutically targeted with clinical benefit. Post-clinical validation using patient-derived model systems corroborated these findings, confirmed a membrane-bound and constitutively active fusion protein, and identified potential mechanisms of resistance to single-agent treatment with ipatasertib. SIGNIFICANCE: This study describes the patient-driven discovery of the first AKT1 fusion-driven cancer and its treatment with the AKT inhibitor ipatasertib. Patient-derived in vitro and in vivo model systems are used to confirm the LAMTOR1-AKT1 fusion as a tumorigenic driver and identify potential mechanisms of resistance to AKT inhibition.This article is highlighted in the In This Issue feature, p. 565.


Asunto(s)
Carcinoma/tratamiento farmacológico , Carcinoma/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/genética , Animales , Carcinoma/enzimología , Carcinoma/patología , Niño , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Femenino , Fusión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Terapia Molecular Dirigida , Piperazinas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pirimidinas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Nat Commun ; 9(1): 1471, 2018 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-29662057

RESUMEN

We and others have shown that transition and maintenance of biological states is controlled by master regulator proteins, which can be inferred by interrogating tissue-specific regulatory models (interactomes) with transcriptional signatures, using the VIPER algorithm. Yet, some tissues may lack molecular profiles necessary for interactome inference (orphan tissues), or, as for single cells isolated from heterogeneous samples, their tissue context may be undetermined. To address this problem, we introduce metaVIPER, an algorithm designed to assess protein activity in tissue-independent fashion by integrative analysis of multiple, non-tissue-matched interactomes. This assumes that transcriptional targets of each protein will be recapitulated by one or more available interactomes. We confirm the algorithm's value in assessing protein dysregulation induced by somatic mutations, as well as in assessing protein activity in orphan tissues and, most critically, in single cells, thus allowing transformation of noisy and potentially biased RNA-Seq signatures into reproducible protein-activity signatures.


Asunto(s)
Algoritmos , Neoplasias Encefálicas/genética , Linaje de la Célula/genética , Redes Reguladoras de Genes , Glioblastoma/genética , Factores de Transcripción/genética , Animales , Linfocitos B/citología , Linfocitos B/inmunología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Linaje de la Célula/inmunología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Ratones , Especificidad de Órganos , Mapeo de Interacción de Proteínas , Análisis de la Célula Individual/métodos , Factores de Transcripción/inmunología
10.
Cell Stem Cell ; 21(6): 747-760.e7, 2017 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-29198940

RESUMEN

Myeloid-biased hematopoietic stem cells (MB-HSCs) play critical roles in recovery from injury, but little is known about how they are regulated within the bone marrow niche. Here we describe an auto-/paracrine physiologic circuit that controls quiescence of MB-HSCs and hematopoietic progenitors marked by histidine decarboxylase (Hdc). Committed Hdc+ myeloid cells lie in close anatomical proximity to MB-HSCs and produce histamine, which activates the H2 receptor on MB-HSCs to promote their quiescence and self-renewal. Depleting histamine-producing cells enforces cell cycle entry, induces loss of serial transplant capacity, and sensitizes animals to chemotherapeutic injury. Increasing demand for myeloid cells via lipopolysaccharide (LPS) treatment specifically recruits MB-HSCs and progenitors into the cell cycle; cycling MB-HSCs fail to revert into quiescence in the absence of histamine feedback, leading to their depletion, while an H2 agonist protects MB-HSCs from depletion after sepsis. Thus, histamine couples lineage-specific physiological demands to intrinsically primed MB-HSCs to enforce homeostasis.


Asunto(s)
Médula Ósea/metabolismo , Células Madre Hematopoyéticas/metabolismo , Histamina/metabolismo , Células Mieloides/metabolismo , Animales , Médula Ósea/efectos de los fármacos , Trasplante de Médula Ósea , Citometría de Flujo , Células Madre Hematopoyéticas/efectos de los fármacos , Lipopolisacáridos/farmacología , Ratones , Células Mieloides/efectos de los fármacos
11.
Biofabrication ; 6(3): 035001, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24722236

RESUMEN

Advances in three-dimensional (3D) printing have enabled the direct assembly of cells and extracellular matrix materials to form in vitro cellular models for 3D biology, the study of disease pathogenesis and new drug discovery. In this study, we report a method of 3D printing for Hela cells and gelatin/alginate/fibrinogen hydrogels to construct in vitro cervical tumor models. Cell proliferation, matrix metalloproteinase (MMP) protein expression and chemoresistance were measured in the printed 3D cervical tumor models and compared with conventional 2D planar culture models. Over 90% cell viability was observed using the defined printing process. Comparisons of 3D and 2D results revealed that Hela cells showed a higher proliferation rate in the printed 3D environment and tended to form cellular spheroids, but formed monolayer cell sheets in 2D culture. Hela cells in 3D printed models also showed higher MMP protein expression and higher chemoresistance than those in 2D culture. These new biological characteristics from the printed 3D tumor models in vitro as well as the novel 3D cell printing technology may help the evolution of 3D cancer study.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Proliferación Celular , Células/citología , Neoplasias del Cuello Uterino/fisiopatología , Técnicas de Cultivo de Célula/instrumentación , Supervivencia Celular , Células/enzimología , Matriz Extracelular/metabolismo , Femenino , Células HeLa , Humanos , Hidrogeles/química , Metaloproteinasas de la Matriz/metabolismo , Modelos Biológicos , Neoplasias del Cuello Uterino/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA