Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Aging (Albany NY) ; 16(8): 6954-6989, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38613802

RESUMEN

BACKGROUND: Glioma, a highly invasive and deadly form of human neoplasm, presents a pressing need for the exploration of potential therapeutic targets. While the lysosomal protein transmembrane 4A (LATPM4A) has been identified as a risk factor in pancreatic cancer patients, its role in glioma remains unexplored. METHODS: The analysis of differentially expressed genes (DEG) was conducted from The Cancer Genome Atlas (TCGA) glioma dataset and the Genotype Tissue Expression (GTEx) dataset. Through weighted gene co-expression network analysis (WGCNA), the key glioma-related genes were identified. Among these, by using Kaplan-Meier (KM) analysis and univariate/multivariate COX methods, LAPTM4A emerged as the most influential gene. Moreover, the bioinformatics methods and experimental verification were employed to analyze its relationships with diagnosis, clinical parameters, epithelial-mesenchymal transition (EMT), metastasis, immune cell infiltration, immunotherapy, drug sensitivity, and ceRNA network. RESULTS: Our findings revealed that LAPTM4A was up-regulated in gliomas and was associated with clinicopathological features, leading to poor prognosis. Furthermore, functional enrichment analysis demonstrated that LATPM4A played a role in the immune system and cancer progression. In vitro experiments indicated that LAPTM4A may influence metastasis through the EMT pathway in glioma. Additionally, we found that LAPTM4A was associated with the tumor microenvironment (TME) and immunotherapy. Notably, drug sensitivity analysis revealed that patients with high LAPTM4A expression were sensitive to doxorubicin, which contributed to a reduction in LAPTM4A expression. Finally, we uncovered the FGD5-AS1-hsa-miR-103a-3p-LAPTM4A axis as a facilitator of glioma progression. CONCLUSIONS: In conclusion, our study identifies LATPM4A as a promising biomarker for prognosis and immune characteristics in glioma.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Encefálicas , Biología Computacional , Glioma , Proteínas de la Membrana , Femenino , Humanos , Masculino , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Glioma/genética , Glioma/patología , Glioma/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Pronóstico
2.
J Phys Chem Lett ; 14(34): 7597-7602, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37603698

RESUMEN

Dinitrogen (N2) activation and its chemical transformations are some of the most challenging topics in chemistry. Herein, we report that heteronuclear metal anions AuNbBO- can mediate the direct coupling of N2 and O2 to generate NO molecules. N2 first forms the nondissociative adsorption product AuNbBON2- on AuNbBO-. In the following reactions with two O2 molecules, two NO molecules are gradually released, with the formation of AuNbBO2N- and AuNbBO3-. In the reaction with the first O2, the generated nitrene radical (N••-) originating from the dissociated N2, induces the activation of O2. Subsequently, the second O2 is anchored and forms a superoxide radical (O2•-); this radical attacks the other N atom to form an N-O bond, releasing the second NO. The N••- and O2•- radicals play key roles in the reactions. The mechanism adopted in this direct oxidation of N2 by O2 to NO can be labeled as a Zeldovich-like mechanism.

3.
Aging (Albany NY) ; 15(13): 6179-6211, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37400985

RESUMEN

Hepatocellular carcinoma (HCC) is an ongoing challenge worldwide. Zinc finger protein 765 (ZNF765) is an important zinc finger protein that is related to the permeability of the blood-tumor barrier. However, the role of ZNF765 in HCC is unclear. This study evaluated the expression of ZNF765 in hepatocellular carcinoma and the impact of its expression on patient prognosis based on The Cancer Genome Atlas (TCGA). Immunohistochemical assays (IHC) were used to examine protein expression. Besides, a colony formation assay was used to examine cell viability. We also explored the relationship between ZNF765 and chemokines in the HCCLM3 cells by qRT-PCR. Moreover, we examined the effect of ZNF765 on cell resistance by measurement of the maximum half-inhibitory concentration. Our research revealed that ZNF765 expression in HCC samples was higher than that in normal samples, whose upregulation was not conducive to the prognosis. The results of GO, KEGG, and GSEA showed that ZNF765 was associated with the cell cycle and immune infiltration. Furthermore, we confirmed that the expression of ZNF765 had a strong connection with the infiltration level of various immune cells, such as B cells, CD4+ T cells, macrophages, and neutrophils. In addition, we found that ZNF765 was associated with m6A modification, which may affect the progression of HCC. Finally, drug sensitivity testing found that patients with HCC were sensitive to 20 drugs when they expressed high levels of ZNF765. In conclusion, ZNF765 may be a prognostic biomarker related to cell cycle, immune infiltration, m6A modification, and drug sensitivity for hepatocellular carcinoma.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Pronóstico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Ciclo Celular , Biomarcadores
4.
Aging (Albany NY) ; 15(8): 2937-2969, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37074800

RESUMEN

PURPOSE: Hepatocellular carcinoma (HCC) is a prevalent tumor with high morbidity, and an unfavourable prognosis. FARSB is an aminoacyl tRNA synthase, and plays a key role in protein synthesis in cells. Furthermore, previous reports have indicated that FARSB is overexpressed in gastric tumor tissues and is associated with a poor prognosis and tumorigenesis. However, the function of FARSB in HCC has not been studied. RESULTS: The results showed that FARSB mRNA and protein levels were upregulated in HCC and were closely related to many clinicopathological characteristics. Besides, according to multivariate Cox analysis, high FARSB expression was linked with a shorter survival time in HCC and may be an independent prognostic factor. In addition, the FARSB promoter methylation level was negatively associated with the expression of FARSB. Furthermore, enrichment analysis showed that FARSB was related to the cell cycle. And TIMER analysis revealed that the FARSB expression was closely linked to tumor purity and immune cell infiltration. The TCGA and ICGC data analysis suggested that FARSB expression is greatly related to m6A modifier related genes. Potential FARSB-related ceRNA regulatory networks were also constructed. What's more, based on the FARSB-protein interaction network, molecular docking models of FARSB and RPLP1 were constructed. Finally, drug susceptibility testing revealed that FARSB was susceptible to 38 different drugs or small molecules. CONCLUSIONS: FARSB can serve as a prognostic biomarker for HCC and provide clues about immune infiltration, and m6A modification.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Mycobacterium tuberculosis , Humanos , Carcinoma Hepatocelular/genética , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Pronóstico , Neoplasias Hepáticas/genética , Biomarcadores
5.
Aging (Albany NY) ; 15(7): 2631-2666, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37059586

RESUMEN

Hepatocellular carcinoma (HCC) is the most common subtype of liver cancer, with a high morbidity and low survival rate. Rho GTPase activating protein 39 (ARHGAP39) is a crucial activating protein of Rho GTPases, a novel target in cancer therapy, and it was identified as a hub gene for gastric cancer. However, the expression and role of ARHGAP39 in hepatocellular carcinoma remain unclear. Accordingly, the cancer genome atlas (TCGA) data were used to analyze the expression and clinical value of ARHGAP39 in hepatocellular carcinoma. Further, the LinkedOmics tool suggested functional enrichment pathways for ARHGAP39. To investigate in depth the possible role of ARHGAP39 on immune infiltration, we analyzed the relationship between ARHGAP39 and chemokines in HCCLM3 cells. Finally, the GSCA website was used to explore drug resistance in patients with high ARHGAP39 expression. Studies have shown that ARHGAP39 is highly expressed in hepatocellular carcinoma and relevant to clinicopathological features. In addition, the overexpression of ARHGAP39 leads to a poor prognosis. Besides, co-expressed genes and enrichment analysis showed a correlation with the cell cycle. Notably, ARHGAP39 may worsen the survival of hepatocellular carcinoma patients by increasing the level of immune infiltration through chemokines. Moreover, N6-methyladenosine (m6A) modification-related factors and drug sensitivity were also found to be associated with ARHGAP39. In brief, ARHGAP39 is a promising prognostic factor for hepatocellular carcinoma patients that is closely related to cell cycle, immune infiltration, m6A modification, and drug resistance.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Biomarcadores , Carcinoma Hepatocelular/genética , Ciclo Celular , Neoplasias Hepáticas/genética , Pronóstico
6.
Aging (Albany NY) ; 14(18): 7416-7442, 2022 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-36098680

RESUMEN

Kidney renal clear cell carcinoma (KIRC) is a common and invasive subtype of renal tumors, which has poor prognosis and high mortality. MND1 is a meiosis specific protein that participates in the progress of diverse cancers. Nonetheless, its function in KIRC was unclear. Here, TIMER, TCGA, GEO databases and IHC found MND1 expression is upregulated in KIRC, leading to poor overall survival, and MND1 can serve as an independent prognostic factor. Moreover, enrichment analysis revealed the functional relationship between MND1 and cell cycle, immune infiltration. EdU and transwell assays confirmed that MND1 knockdown surely prohibited the proliferation, migration, and invasion of KIRC cells. Additionally, immune analysis showed that MND1 displayed a strong correlation with various immune cells. Interference with MND1 significantly reduces the expression of chemokines. TCGA and GEO databases indicated that MND1 expression is significantly related to two m6A modification related gene (METTL14, IGF2BP3). Finally, the drug sensitivity analysis revealed 7 potentially sensitive drugs for KIRC patients with high MND1 expression. In conclusion, MND1 can be used as a prognostic biomarker for KIRC and provides clues regarding cell cycle, immune infiltrates and m6A. Sensitive drugs may be an effective treatment strategy for KIRC patients with high expression of MND1.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Biomarcadores de Tumor/genética , Carcinoma de Células Renales/patología , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Humanos , Riñón/patología , Neoplasias Renales/patología , Pronóstico
7.
J Hepatocell Carcinoma ; 9: 497-516, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35669909

RESUMEN

Purpose: Hepatocellular carcinoma (HCC) is a malignancy with high incidence, but its prognosis is not optimistic. KRBA1 is a member of the KRAB family and participates in the regulation of gene transcription. However, no studies have focused on the role of KRBA1 in HCC. Patients and Methods: In this study, we first analyzed the expression of KRBA1 in HCC using TCGA and ICGC databases and validated by Immunohistochemistry in clinical HCC samples. The Wilcoxon rank-sum test was used to determine the relationship between KRBA1 expression and clinicopathological features. Subsequently, we used Kaplan-Meier online website analysis and Cox regression model to predict the prognostic value of KRBA1 in HCC patients. Furthermore, the functions of KRBA1 were identified by enrichment analysis. TIMER and GSCALite were used to investigate the relationship between KRBA1 expression in HCC and immune infiltration and drug targets, respectively. Finally, the relationship between KRBA1 expression and m6A modification in HCC was analyzed using the TCGA and ICGA datasets. Results: The results showed that KRBA1 was upregulated in HCC and was associated with many clinicopathological features. High KRBA1 causes poor overall survival and may be an independent risk factor for HCC. KRBA1 tends to be hypermethylated and associated with poor prognosis in HCC compared with normal tissues. Enrichment analysis indicates that KRBA1 is associated with cell cycle and immune processes, and TIMER analysis shows that KRBA1 expression is associated with infiltration levels and immune characteristics of various immune cells. Silenced KRBA1 evidently reduced three chemokine expression in HCC cells. Drug sensitivity analysis showed that KRBA1 was sensitive to 39 drug small molecules. KRBA1 showed a strong positive correlation with five m6A related genes. Conclusion: KRBA1 is a prognostic biomarker associated with HCC immunity and m6a modification, serving as an effective target for the diagnosis and treatment of HCC.

8.
J Cell Mol Med ; 25(23): 10980-10989, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34773364

RESUMEN

Deubiquitinating enzyme OTU domain-containing ubiquitin aldehyde-binding proteins 1 (OTUB1) has been shown to have an essential role in multiple carcinomas. However, the function of OTUB1 in papillary thyroid cancer (PTC) and the underlying mechanisms regulating PTC cells proliferation remain poorly understood. In this study, OTUB1 was significantly upregulated in papillary thyroid carcinoma tissues and cells. Through in vitro and in vivo experiments, knockdown of OTUB1 suppressed PTC cells growth whereas OTUB1 overexpression enhanced the proliferation ability of PTC cells. Moreover, the eyes absent homologue 1 (EYA1) was recognized as a potential target of OTUB1 through mass spectrometry analysis, and we further verified that EYA1 protein level was positively correlated with OTUB1 expression in PTC cells and clinical samples. Mechanistically, OTUB1 could interact with EYA1 directly and deubiquitinate EYA1 to stabilize it. At last, EYA1 was found to play an essential role in OTUB1-derived PTC cells growth. Overall, our investigation reveals that OTUB1 is a previously unrecognized oncogenic factor in PTC cells proliferation and suggests that OTUB1 might be a novel therapeutic target in PTC.


Asunto(s)
Proliferación Celular/genética , Enzimas Desubicuitinizantes/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Nucleares/genética , Proteínas Tirosina Fosfatasas/genética , Neoplasias de la Tiroides/genética , Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Oncogenes/genética , Transducción de Señal/genética , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/patología , Regulación hacia Arriba/genética
9.
Am J Cancer Res ; 11(10): 4807-4825, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34765294

RESUMEN

Deubiquitinase (DUB) zinc finger RANBP2-type containing 1 (ZRANB1) has been reported to have a close relationship with cancers. However, its underlying role and molecular mechanisms in hepatocellular carcinoma (HCC) remain elusive. In this study, we demonstrated that ZRANB1 was highly expressed in HCC tissues. Additionally, ZRANB1 overexpression was correlated with poorer survival and ZRANB1 could be an independent predictor of poor prognosis for HCC patients. Through gain- and loss-of-function assays, we examined the oncogenic role of ZRANB1 in regulating HCC cell growth and metastasis in vitro and in vivo. To identify the downstream targets of ZRANB1 in regulating HCC tumorigenesis, we performed RNA-seq and demonstrated that Lysyl oxidase-like 2 (LOXL2) was the most significantly downregulated gene after ZRANB1 knockdown. Furthermore, the scatter plots indicated a significant positive correlation between ZRANB1 and LOXL2 expression in clinical HCC specimens. We also demonstrated that ZRANB1 knockdown downregulated the expression of LOXL2 and suppressed HCC growth and metastasis in vitro and in vivo. The effects of ZRANB1 knockdown were reversed by LOXL2 overexpression. More importantly, ZRANB1 regulated LOXL2 through specificity protein 1 (SP1) and SP1 overexpression rescued the suppression of HCC growth and metastasis induced by ZRANB1 knockdown. Mechanistically, ZRANB1 bound with SP1 directly and stabilized the SP1 protein by deubiquitinating it. The expression patterns of ZRANB1, SP1 and LOXL2 were evaluated in HCC patients. In summary, our research highlights a novel role of ZRANB1 in the tumorigenesis of HCC and suggests a new candidate prognostic biomarker for HCC treatment.

10.
Endocrinology ; 162(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33508120

RESUMEN

COP9 signalosome subunit 5 (CSN5) plays a key role in carcinogenesis of multiple cancers and contributes to the stabilization of target proteins through deubiquitylation. However, the underlying role of CSN5 in thyroid carcinoma has not been reported. In this research, our data showed that CSN5 was overexpressed in thyroid carcinoma tissues compared with paracancerous tissues. Furthermore, a series of gain/loss functional assays were performed to demonstrate the role of CSN5 in facilitating thyroid carcinoma cell proliferation and metastasis. Additionally, we found there was a positive correlation between CSN5 and angiopoietin-like protein 2 (ANGPTL2) protein levels in thyroid carcinoma tissues and that CSN5 promoted thyroid carcinoma cell proliferation and metastasis through ANGPTL2. We also identified the underlying mechanism that CSN5 elevated ANGPTL2 protein level by directly binding it, decreasing its ubiquitination and degradation. Overall, our results highlight the significance of CSN5 in promoting thyroid carcinoma carcinogenesis and implicate CSN5 as a promising candidate for thyroid carcinoma treatment.


Asunto(s)
Proteínas Similares a la Angiopoyetina/fisiología , Complejo del Señalosoma COP9/fisiología , Carcinogénesis/genética , Péptidos y Proteínas de Señalización Intracelular/fisiología , Péptido Hidrolasas/fisiología , Neoplasias de la Tiroides/genética , Proteína 2 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina/metabolismo , Animales , Células Cultivadas , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Procesamiento Proteico-Postraduccional/genética , Proteolisis , Transducción de Señal/genética , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología , Ubiquitinación/genética
11.
Phys Chem Chem Phys ; 22(46): 27357-27363, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33231227

RESUMEN

The heterogeneous oxidation of isoprene (C5H8) by metal-oxide particles, such as the typical mineral aerosols TiO2, plays an important role in the isoprene atmospheric chemistry. However, the underlying mechanism of C5H8 oxidation remains elusive owing to the complexities of aerosol surfaces and reaction channels. Herein, we report the gas-phase reactions of TixOy+ (x = 1-7, y = 1-14) cations with isoprene by using mass spectrometry and density functional theory (DFT) calculations. Five types of reaction channels were observed: association, hydrogen atom transfer (HAT), C-C bond cleavage, combined oxygen atom transfer (OAT) and HAT and combined OAT and C-C bond cleavage. It is noteworthy that formaldehyde is known as the major oxidation product of isoprene/hydroxyl radicals in the atmosphere. In addition, CO has not been observed in the reactions of isoprene with gas-phase ions. Therefore, the reaction mechanisms of CH2O and CO generation observed in Ti2O5+/C5H8 and Ti4O8+/C5H8 systems were further investigated by DFT calculations, and the calculated results are in agreement with the experimental observations. In these two reactions, both Ti and O atoms can be the adsorption sites for C5H8. The reaction channels and mechanistic information gained in these gas-phase model reactions may offer fundamental insights relevant to the corresponding oxidation processes over titanium oxide aerosols in the atmosphere.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA