Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Chem Res Toxicol ; 37(8): 1382-1393, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39075630

RESUMEN

Understanding the potential carcinogenic potency of nitrosamines is necessary to setting acceptable intake limits. Nitrosamines and the components that can form them are commonly present in food, water, cosmetics, and tobacco. The recent observation of nitrosamines in pharmaceuticals highlighted the need for effective methods to determine acceptable intake limits. Herein, we describe two computational models that utilize properties based upon quantum mechanical calculations in conjunction with mechanistic insights and established data to determine the carcinogenic potency of a variety of common nitrosamines. These models can be applied to experimentally untested nitrosamines to aid in the establishment of acceptable intake limits.


Asunto(s)
Carcinógenos , Nitrosaminas , Nitrosaminas/química , Carcinógenos/química , Carcinógenos/toxicidad , Cinética , Humanos , Pruebas de Carcinogenicidad , Teoría Cuántica
2.
Chem Res Toxicol ; 37(2): 181-198, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38316048

RESUMEN

A thorough literature review was undertaken to understand how the pathways of N-nitrosamine transformation relate to mutagenic potential and carcinogenic potency in rodents. Empirical and computational evidence indicates that a common radical intermediate is created by CYP-mediated hydrogen abstraction at the α-carbon; it is responsible for both activation, leading to the formation of DNA-reactive diazonium species, and deactivation by denitrosation. There are competing sites of CYP metabolism (e.g., ß-carbon), and other reactive species can form following initial bioactivation, although these alternative pathways tend to decrease rather than enhance carcinogenic potency. The activation pathway, oxidative dealkylation, is a common reaction in drug metabolism and evidence indicates that the carbonyl byproduct, e.g., formaldehyde, does not contribute to the toxic properties of N-nitrosamines. Nitric oxide (NO), a side product of denitrosation, can similarly be discounted as an enhancer of N-nitrosamine toxicity based on carcinogenicity data for substances that act as NO-donors. However, not all N-nitrosamines are potent rodent carcinogens. In a significant number of cases, there is a potency overlap with non-N-nitrosamine carcinogens that are not in the Cohort of Concern (CoC; high-potency rodent carcinogens comprising aflatoxin-like-, N-nitroso-, and alkyl-azoxy compounds), while other N-nitrosamines are devoid of carcinogenic potential. In this context, mutagenicity is a useful surrogate for carcinogenicity, as proposed in the ICH M7 (R2) (2023) guidance. Thus, in the safety assessment and control of N-nitrosamines in medicines, it is important to understand those complementary attributes of mechanisms of mutagenicity and structure-activity relationships that translate to elevated potency versus those which are associated with a reduction in, or absence of, carcinogenic potency.


Asunto(s)
Carcinógenos , Nitrosaminas , Humanos , Animales , Carcinógenos/toxicidad , Nitrosaminas/toxicidad , Nitrosaminas/metabolismo , Mutágenos/toxicidad , Roedores/metabolismo , Carcinogénesis , Carbono , Pruebas de Mutagenicidad
3.
J Med Chem ; 65(23): 15584-15607, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36441966

RESUMEN

The detection of N-nitrosamines, derived from solvents and reagents and, on occasion, the active pharmaceutical ingredient (API) at higher than acceptable levels in drug products, has led regulators to request a detailed review for their presence in all medicinal products. In the absence of rodent carcinogenicity data for novel N-nitrosamines derived from amine-containing APIs, a conservative class limit of 18 ng/day (based on the most carcinogenic N-nitrosamines) or the derivation of acceptable intakes (AIs) using structurally related surrogates with robust rodent carcinogenicity data is recommended. The guidance has implications for the pharmaceutical industry given the vast number of marketed amine-containing drugs. In this perspective, the rate-limiting step in N-nitrosamine carcinogenicity, involving cytochrome P450-mediated α-carbon hydroxylation to yield DNA-reactive diazonium or carbonium ion intermediates, is discussed with reference to the selection of read-across analogs to derive AIs. Risk-mitigation strategies for managing putative N-nitrosamines in the preclinical discovery setting are also presented.


Asunto(s)
Nitrosaminas , Nitrosaminas/toxicidad , Aminas , Preparaciones Farmacéuticas
4.
Chem Res Toxicol ; 35(3): 475-489, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35212515

RESUMEN

The potential for N-nitrosamine impurities in pharmaceutical products presents a challenge for the quality management of medicinal products. N-Nitrosamines are considered cohort-of-concern compounds due to the potent carcinogenicity of many of the structurally simple chemicals within this structural class. In the past 2 years, a number of drug products containing certain active pharmaceutical ingredients have been withdrawn or recalled from the market due to the presence of carcinogenic low-molecular-weight N,N-dialkylnitrosamine impurities. Regulatory authorities have issued guidance to market authorization holders to review all commercial drug substances/products for the potential risk of N-nitrosamine impurities, and in cases where a significant risk of N-nitrosamine impurity is identified, analytical confirmatory testing is required. A key factor to consider prior to analytical testing is the estimation of the daily acceptable intake (AI) of the N-nitrosamine impurity. A significant proportion of N-nitrosamine drug product impurities are unique/complex structures for which the development of low-level analytical methods is challenging. Moreover, these unique/complex impurities may be less potent carcinogens compared to simple nitrosamines. In the present work, our objective was to derive AIs for a large number of complex N-nitrosamines without carcinogenicity data that were identified as potential low-level impurities. The impurities were first cataloged and grouped according to common structural features, with a total of 13 groups defined with distinct structural features. Subsequently, carcinogenicity data were reviewed for structurally related N-nitrosamines relevant to each of the 13 structural groups and group AIs were derived conservatively based on the most potent N-nitrosamine within each group. The 13 structural group AIs were used as the basis for assigning AIs to each of the structurally related complex N-nitrosamine impurities. The AIs of several N-nitrosamine groups were found to be considerably higher than those for the simple N,N-dialkylnitrosamines, which translates to commensurately higher analytical method detection limits.


Asunto(s)
Nitrosaminas , Carcinógenos , Contaminación de Medicamentos , Humanos
5.
Environ Mol Mutagen ; 60(9): 766-777, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31335992

RESUMEN

Arylboronic acids and esters (referred to collectively as arylboronic compounds) are commonly used intermediates in the synthesis of pharmaceuticals but pose a challenge for chemical syntheses because they are often positive for bacterial mutagenicity in vitro. As such, arylboronic compounds are then typically controlled to levels that are acceptable for mutagenic impurities, that is, the threshold of toxicological concern (TTC). This study used ICH M7 guidance to design and conduct a testing strategy to investigate the in vivo relevance of the in vitro positive findings of arylboronic compounds. Eight arylboronic compounds representing a variety of chemical scaffolds were tested in Sprague Dawley and/or Wistar rats in the in vivo Pig-a (peripheral blood reticulocytes and mature red blood cells) and/or comet assays (duodenum and/or liver). Five of the eight compounds were also tested in the micronucleus (peripheral blood) assay. The arylboronic compounds tested orally demonstrated high systemic exposure; thus the blood and bone marrow were adequately exposed to test article. One compound was administered intravenously due to formulation stability issues. This investigation showed that arylboronic compounds that were mutagenic in vitro were not found to be mutagenic in the corresponding in vivo assays. Therefore, arylboronic compounds similar to the scaffolds tested in this article may be considered non-mutagenic and managed in accordance with the ICH Q3A/Q3B guidelines. Environ. Mol. Mutagen. 2019. © 2019 Wiley Periodicals, Inc.


Asunto(s)
Ácidos Borónicos/toxicidad , Ésteres/toxicidad , Mutágenos/toxicidad , Animales , Médula Ósea/efectos de los fármacos , Ensayo Cometa/métodos , Duodeno/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Hígado/diagnóstico por imagen , Masculino , Pruebas de Micronúcleos/métodos , Mutagénesis/efectos de los fármacos , Pruebas de Mutagenicidad/métodos , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Reticulocitos/efectos de los fármacos
6.
Environ Mol Mutagen ; 59(4): 312-321, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29481708

RESUMEN

2-Hydroxypyridine-N-oxide (HOPO) is a useful coupling reagent for synthesis of active pharmaceutical ingredients. It has been reported to be weakly mutagenic in the Ames assay (Ding W et al. []: J Chromatogr A 1386:47-52). According to the ICH M7 guidance (2014) regarding control of mutagenic impurities to limit potential carcinogenic risk, mutagens require control in drug substances such that exposure not exceeds the threshold of toxicological concern. Given the weak response observed in the Ames assay and the lack of any obvious structural features that could confer DNA reactivity we were interested to determine if the results were reproducible and investigate the role of potentially confounding experimental parameters. Specifically, Ames tests were conducted to assess the influence of compound purity, solvent choice, dose spacing, toxicity, type of S9 (aroclor vs phenobarbital/ß-napthoflavone), and lot variability on the frequency of HOPO induced revertant colonies. Initial extensive testing using one lot of HOPO produced no evidence of mutagenic potential in the Ames assays. Subsequent studies with four additional lots produced conflicting results, with an ∼2.0-fold increase in revertant colonies observed. Given the rigor of the current investigation, lack of reproducibility between lots, and the weak increase in revertants, it is concluded that HOPO is equivocal in the bacterial reverse mutation assay. It is highly unlikely that HOPO poses a mutagenic risk in vivo; therefore, when it is used as a reagent in pharmaceutical synthesis, it should not be regarded as a mutagenic impurity, but rather a normal process related impurity. Environ. Mol. Mutagen. 59:312-321, 2018. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Óxidos N-Cíclicos/toxicidad , Pruebas de Mutagenicidad/normas , Piridinas/toxicidad , Bacterias/efectos de los fármacos , Óxidos N-Cíclicos/química , Piridinas/química , Reproducibilidad de los Resultados
7.
Regul Toxicol Pharmacol ; 91: 68-76, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29061373

RESUMEN

The ICH M7 Guideline requires low level control of mutagenic impurities in pharmaceutical products to minimize cancer risk in patients (ICHM7, 2014). Bacterial mutagenicity (Ames) data is generally used to determine mutagenic and possible carcinogenic potential of compounds. Recently, a publication on experiences of using two in silico systems to identify potentially mutagenic impurities highlighted the importance of performing a critical review of published Ames data utilized as part of a mutagenicity assessment of impurities (Greene et al., 2015). Four compounds (2-amino-5-hydroxybenzoic acid, 2-amino-3-chlorobenzoic acid, methyl 2-amino-4-chlorobenzoate and 4-morpholinopyridine) reported mutagenic were identified in a two system in silico assessment and expert review of the structuresas non-mutagenic. Likely reasons for mutagenicity could not be identified and the purity of the compounds tested was proposed. In the current investigation, the purest available sample of the four compounds was tested in an OECD-compliant Ames test. The compounds were all found to be non-mutagenic. Possible reasons for the discrepancy between previously reported and current results are discussed. Additionally, important points to consider when conducting an expert review of available Ames data are provided particularly in cases where reported Ames results are discrepant with a two system in silico assessment.


Asunto(s)
Mutágenos/química , Preparaciones Farmacéuticas/química , Animales , Simulación por Computador , Contaminación de Medicamentos , Escherichia coli/efectos de los fármacos , Mutagénesis/efectos de los fármacos , Pruebas de Mutagenicidad/métodos , Ratas , Salmonella typhimurium/efectos de los fármacos
8.
Mutat Res ; 746(1): 29-34, 2012 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-22445949

RESUMEN

The Organization for Economic Co-operation and Development (OECD) has recently adopted Test Guideline 487 (TG487) for conducting the in vitro micronucleus (MNvit) assay. The purpose of this study is to evaluate and validate treatment conditions for the use of p53 competent TK6 human lymphoblastoid cells in a TG487 compliant MNvit assay. The ten reference compounds suggested in TG487 (mitomycin C, cytosine arabinoside, cyclophosphamide, benzo-a-pyrene, vinblastine sulphate, colchicine, sodium chloride, nalidixic acid and di(2-ethylhexyl)phthalate and pyrene) and noscapine hydrochloride were chosen for this study. In order to optimize the micronucleus response after treatment with some positive substances, we extended the recovery time after pulse treatment from 2 cell cycles recommended in TG487 to 3 cell cycles for untreated cells (40h). Each compound was tested in at least one of four exposure conditions: a 4h exposure followed by a 40h recovery, a 4h exposure followed by a 24h recovery, a 4h exposure in the presence of an exogenous metabolic activation system followed by a 40h recovery period, and a 27h continuous direct treatment. Results show that the direct acting clastogens, clastogens requiring metabolic activation and aneugens caused a robust increase in micronuclei in at least one test condition whereas the negative compounds did not induce micronuclei. The negative control cultures exhibited reproducibly low and consistent micronucleus frequencies ranging from 0.4 to 1.8% (0.8±0.3% average and standard deviation). Furthermore, extending the recovery period from 24h to 40h produced a 2-fold higher micronucleus frequency after a 4h pulse treatment with mitomycin C. In summary, the protocol described in this study in TK6 cells produced the expected result with model compounds and should be suitable for performing the MNvit assay in accordance with guideline TG487.


Asunto(s)
Antineoplásicos/toxicidad , Pruebas de Micronúcleos/métodos , Mutágenos/toxicidad , Aneugénicos/toxicidad , Biotransformación , Línea Celular , Guías como Asunto , Humanos
9.
Int J Toxicol ; 28(6): 468-78, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19966139

RESUMEN

This symposium focuses on the management of genotoxic impurities in the synthesis of pharmaceuticals. Recent developments in both Europe and United States require sponsors of new drug applications to develop processes to control the risks of potential genotoxic impurities. Genotoxic impurities represent a special case relative to the International Conference on Harmonisation Q3A/Q3B guidances, because genotoxicity tests used to qualify the drug substance may not be sufficient to demonstrate safety of a potentially genotoxic impurity. The default risk management approach for a genotoxic impurity is the threshold of toxicological concern unless a more specific risk characterization is appropriate. The symposium includes descriptions of industry examples where impurities are introduced and managed in the synthesis of a pharmaceutical. It includes recent regulatory developments such as the "staged threshold of toxicological concern" when administration is of short duration (eg, during clinical trials).


Asunto(s)
Contaminación de Medicamentos , Descubrimiento de Drogas , Mutágenos/toxicidad , Preparaciones Farmacéuticas/síntesis química , Animales , Carcinógenos/toxicidad , Química Farmacéutica , ADN/efectos de los fármacos , ADN/genética , Daño del ADN , Relación Dosis-Respuesta a Droga , Metanosulfonato de Etilo/toxicidad , Unión Europea , Humanos , Legislación de Medicamentos , Preparaciones Farmacéuticas/análisis , Preparaciones Farmacéuticas/química , Medición de Riesgo , Estados Unidos
10.
Chem Res Toxicol ; 22(2): 348-56, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19170655

RESUMEN

The role of metabolism in genotoxicity and carcinogenicity of many chemicals is well established. Accordingly, both in vitro metabolic activation systems and in vivo assays are routinely utilized for genotoxic hazard identification of drug candidates prior to clinical investigations. This should, in most cases provide a high degree of confidence that the genotoxic potential of the parent and associated metabolites have been characterized. However, it is well known that significant differences can exist between human metabolism and that which occurs with in vitro and in vivo genotoxicity tests. This poses challenges when considering the adequacy of hazard identification and cancer risk assessment if a human metabolite of genotoxic concern is identified during the course of drug development. Since such challenges are particularly problematic when recognized in the later stages of drug development, a framework for conducting a carcinogenic risk assessment for human genotoxic metabolites is desirable. Here, we propose a risk assessment method that is dependent upon the availability of quantitative human and rodent ADME (absorption, distribution, metabolism, excretion) data, such that exposures to a metabolite of genotoxic concern can be estimated at the intended human efficacious dose and the maximum dose used in the 2-year rodent bioassay(s). The exposures are then applied to the risk assessment framework, based on known cancer potencies, that allows one to understand the probability of a known or suspect genotoxic metabolite posing a carcinogenic risk in excess of 1 in 100,000. Practical case examples are presented to illustrate the application of the risk assessment method within the context of drug development and to highlight its utility and limitations.


Asunto(s)
Pruebas de Mutagenicidad/métodos , Mutágenos/metabolismo , Mutágenos/toxicidad , Animales , Carga Corporal (Radioterapia) , Carcinógenos/metabolismo , Carcinógenos/toxicidad , Humanos , Redes y Vías Metabólicas , Ratas , Medición de Riesgo
11.
Environ Mol Mutagen ; 49(8): 631-41, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18626997

RESUMEN

Because it is well known that metabolites of chemicals and drugs are frequently the ultimate species responsible for genotoxicity and carcinogenicity, in vitro testing to identify the human genotoxicity hazard potential of new chemicals and drugs routinely utilizes liver S-9 fraction from rats treated with Aroclor 1254 as a system that can generate metabolites. However, it is frequently questioned as to whether such an in vitro metabolite generation system is the most relevant for human risk, or whether the assay would be better served by using a human-derived in vitro system. To address this, 16 common drugs have been examined for profiles of metabolites in Aroclor-induced rat liver S-9 and pooled human liver S-9. Metabolite profiles were compared using high pressure liquid chromatography coupled with ion trap mass spectrometry, in line with ultraviolet or radiometric detection to help make semiquantitative comparisons. Results showed that, with few exceptions, metabolites generated in the human system were also generated in the rat system. Also, in several cases the rat system generated considerably more metabolites, suggesting that there is a potential that positive genotoxicity findings could be caused by metabolites that have no relevance to humans. These findings suggest that when conducting in vitro genotoxicity testing using the Aroclor-induced rat liver S-9 system, knowledge of the metabolite profile in the system is important, and a comparison to the profile generated in human liver S-9 could be of value when interpreting the genotoxicity results.


Asunto(s)
Arocloros/toxicidad , Hígado/efectos de los fármacos , Mutágenos/toxicidad , Fracciones Subcelulares/efectos de los fármacos , Animales , Arocloros/farmacocinética , Biotransformación , Sistema Enzimático del Citocromo P-450/metabolismo , Humanos , Hígado/enzimología , Hígado/ultraestructura , Pruebas de Mutagenicidad , Ratas
12.
Environ Mol Mutagen ; 49(4): 318-27, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18366097

RESUMEN

Previously, this laboratory reported on the development of a flow cytometry-based method that automates the assessment of the mitotic index (MI) and numerical chromosome changes in chemically treated cultures of human lymphocytes [Muehlbauer PA and Schuler MJ, 2003, 2005]. With this method, testing design can easily include numerous well-spaced doses to better define the shape of MI dose response curves. In addition, the hypodiploid, hyperdiploid, and polyploid mitotic populations are available simultaneously to determine the biological relevance of polyploidy effects during the conduct of the assay. The current work describes the integration of this flow cytometry-based method into the routine conduct of good laboratory practice structural chromosome aberration assays in vitro, and discusses improvements in evaluating cytotoxicity and polyploidy endpoints. Additional methods for simultaneous assessment of cell death (sub-G1 DNA) are shown in combination with the MI to provide a more complete evaluation of cytotoxic conditions. A total of 30 pharmaceutical compounds were assayed in compliance with Organization for Economic Cooperation and Development and International Conference on Harmonization guidelines. The inclusion of numerous well-spaced doses improved high dose selection and resulted in fewer high dose artifacts. Only 1 compound in 30 produced a positive response in structural aberrations. In comparison, polyploidy induction was observed in 22 of 30 (73%) compounds, with no apparent increases in numerical chromosomal aberrations. These studies show that flow cytometry-based methods can be used to better characterize cytotoxicity dose-response relationships and improve the detection of aneugens.


Asunto(s)
Aneugénicos/toxicidad , Aberraciones Cromosómicas/inducido químicamente , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Citometría de Flujo , Índice Mitótico , Células Cultivadas , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Masculino , Pruebas de Mutagenicidad
13.
Regul Toxicol Pharmacol ; 44(3): 282-93, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16464524

RESUMEN

Starting materials and intermediates used to synthesize pharmaceuticals are reactive in nature and may be present as impurities in the active pharmaceutical ingredient (API) used for preclinical safety studies and clinical trials. Furthermore, starting materials and intermediates may be known or suspected mutagens and/or carcinogens. Therefore, during drug development due diligence need be applied from two perspectives (1) to understand potential mutagenic and carcinogenic risks associated with compounds used for synthesis and (2) to understand the capability of synthetic processes to control genotoxic impurities in the API. Recently, a task force comprised of experts from pharmaceutical industry proposed guidance, with recommendations for classification, testing, qualification and assessing risk of genotoxic impurities. In our experience the proposed structure-based classification, has differentiated 75% of starting materials and intermediates as mutagenic and non-mutagenic with high concordance (92%) when compared with Ames results. Structure-based assessment has been used to identify genotoxic hazards, and prompted evaluation of fate of genotoxic impurities in API. These two assessments (safety and chemistry) culminate in identification of genotoxic impurities known or suspected to exceed acceptable levels in API, thereby triggering actions needed to assure appropriate control and measurement methods are in place. Hypothetical case studies are presented demonstrating this multi-disciplinary approach.


Asunto(s)
Contaminación de Medicamentos/prevención & control , Mutágenos/análisis , Preparaciones Farmacéuticas/síntesis química , Pruebas de Mutagenicidad , Mutágenos/química , Mutágenos/toxicidad , Medición de Riesgo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA